ИHHEHEP
А. НУЛиновскии.

ОХЕКІРИЧІСТЯО

НЗДATE/ЬСТВО НАРКОМЗЕМА "HORAG СЕРЕВНG" MOCKBA 1922

Хкж. Ж. Жy_uukobckuŭ.

ЭЛЕНТРИЧЕСТВО В ПОМОЩЬ КРЕСТЬЯНИНУ.

Электрификация России и применение электричества в сельском хозяйстве.
...............

Нздательетво Наркомвема ННOBA A ДЕРЕВНЯ.

москвА 1922 .

Предисловие.

Вопрос об электрификации Р. С. Ф. С. Р., выдвинутый на VIII Съезде Советов в начале 1921 года, получил пока известность среди населения Республики лишь в самой общей форме, - по существу же он продолжает оставаться совершенно неясным не только среди крестьянства, для обслуживания которого, главным образом, предназначается настоящая книга, но и среди широкого городского населения.

Приступая к изданию предлагаемой книги, Электрозем считает, что в частности электрификация сельского хозяйства немыслима без участия в деле ее осуществления самого крестьянского населения.

В этом также убеждает нас опыт Швеции, где, по последним данным, к 1921 году было электрифицировано уже 30% всей обрабатываемой площади страны. Своим успехом электрификация сельского хозяйства Швеции обязана возникновению в последней и развитию сельскохозяйственных электрификационных кооперативов, которые явились организующим началом в быстром осуществлении нового дела.

Много способствовало его успешности также и широкое ознакомление народных масс Швеции с вопросами электрификации.

Шведский крестьянин теперь не только сознает выгоды от применения электрических токов в его хозяйстве, но и разбирается в основах самой техники.

Что наша русская электрификация сельского хозяйства будет тоже развиваться при содействии кооперативов и непременном участии всего населения - в этом нет никакого сомнения. Четырехгодичный опыт с начала революции убеждает нас в сказанном, и уже теперь

электрификация усиленно развивается в районах кооперированного населения и там, где крестьянство при помощи кооперативов сплочено

Такими районами яв.:яются: Боровичско-Валдайский Новгород. губ., Костромской, Вятский, Тверской и другие.

В указанных районах построены десятки станций и электрифицированы сотни деревень

Но раз мы ставим себе задачу электрификации деревни и вовлечения самого населения в работу по устройству электрической станции и ее содержанию, то отсюда следует, что мы должны научить неопытного крестьянина понимать, что такое электричество вообще и электрификация сельского хозяйства в частности.

Вот почему инженером А. А. Куликовским была составлена настоящая книга, в которой на доступном для крестьянина языке изложены главные понятия об электричестве и объяснена как общая электрификация России, так и электрификация ее сельского хозяйства.

Эта книга является первой в ряде книг для руководства по применению электричества в сельском хозяйстве, которые Электрозем намерен издать в ближайшем
будущем. будущем.

1 декабря 1921 года.
Мосева.
Начальник Отдела Электрификачии
Сельского Хозлйства Н. К. З. В Есин

1. Основные понятия об злектрической знергии, ее производстве и распределении.

Электрификация. Теперь много говорят и пишут об электрификации и считают, что электрификация России может помочь русскому народу скорее поднять его расстроенное хозяйство.

Что же такое электрификация?
Электричествои Электрификацией называютпри-
лектричгия.
неная менение электричества, то-есть применение той особенной силы, которая может приводить во вращение станки, двигать поезда и трамвайные вагоны, пахать землю и обмолачивать хлеб, давать освещение и отопление, передавать по телеграфу и телефону на многие сотни и даже тысячи верст различные сообщения и человеческую речь и вообще совершать много полезной для людей работы.

Электричество или, как говорят еще, электрическая энергия добывается особыми машина ми, которые называются динамо-машины (фиг. 1).

Фur. 1.
Динамо-машина постоянного тока для небольших электрических станций.

Получение элен- Чтобы получить от этих динамо-машин тричестьа от ди-
намо-машин. какого-нибудь двигателя.

Очень маленькие электрические динамо-машины можно вращать от руки или от конного привода, тогда как динамо-машины большие, от которых хотят получить много электричества, приходится вращать паровой ма шиной, керосиновым или нефтяным двигателем.

Применяют также для вращения электрических машин как и для мельниц, водяные или ветряные двигатели.

Электрические

станции.

Bсе то устройство, электрическая котором получается намо-машини энергия, то есть дирршенины, приводящие их во вращение двигатели и различные вспомогательные приборы и приспособления, все это называется электрической станцией (фиг. 2, 3 и 4).

Электрические станции обыкновенно устраивают в особых зданиях; машины и двигатели устанавливают на тяжелых каменных или бетонных фундаментах, и такие. станции, конечно, получаются неподвижными и пэстоянн ыми

Фиг. 2.
Внешний Фин Фиг, 2.
ности (280 лошанинн станции средней мощ-
Подвижные элекНо иногда, когда бывает нужно пользо-
 различных удаленных друг от друга местах и в различрасчета, тогда уогда строить постоянную станцию нет станции. тогда устраивают подвижные электрические
поние В подвижных станциях
или бензиновый двигатель динамо-машина, керосиновый пив двигатель и вспомогательные приборы

устанавливаются уже не на каменных фундаментах, а на железной раме, снабженной колесами, т.-е. попросту говоря - на особой тележке.

В эту тележку можно впрягать лошадей и перевозить станцию по дорогам из деревни в деревню или из поля

ч поле, именно в то место, где нужно получить электри

Pacaper
находящчхся на доске электрической станции. При помощи динамо-машинами и электрическими пория управлени

Перөдача элек

трической энер- Электричество, которое получается на на расстояние. по мртческой станции, можно передавать волокам на далекое расстояние обыкновенно медным, про Такие проволоки расстояние
ко, чтобы элект ричество саются проводами. Нужно тольи не переходило с одного прроводов не уходило в землю проволоки надо изо и друг от друга такими ровать, т.-е. отделять от земли себя не пропускаютими веществами, которые его сквозь фарфор, резина, шелк итими веществами являются стекло,

Вот почему, шролк и некоторые другие.
чество, подвешивают эок, по которым проходит электрилянных подставках, на особых фарфоровых или стекпокрывают резиновой называемых изоляторами, или же Провода, который оболочкой.
и по которым электричество из электрической станции называются все вместе сето передается в разные места трической сетью

Электричесний Электричество движется по проволокам ток. наподобие того, как течет по трубам во да водопроводе.

Движение электричества по проводам наэывается электрическим током.
Напряжение элек- Каждому хорошо известно, что вода по трического тока иямерение. одним и тем же трубам может протекать с различным напором.

Если, например, мы проводим воду в поле или огород для орошения по трубе из бака, который стоит только немного выше того места, куда мы ведем воду, то вода будет течь по трубе слабо, но если тот же бак поднять на большую высоту, ну хотя бы, например, поставить его на крышу двухъэтажного дома, то вода станет течь уже с более сильным напором.

Подобно воде и электричество может двигаться или течь по проводам с различным напором или, как говорят, с различным напряжением.

Напряжение электрического

Фur. 6.
Вольтметр для измерения
напряжения электрического
тока. тока зависит прежде всего от устройства той динамо-машины, которая этот ток производит, и измеряется особой мерой-вольтом.

Для измерения напряжения электрического тока употребляются специальные приборы или вольтметры (фиг. 6).

Они присоединяются к проводам, по которым идет ток, и посредством имеющейся у них подвижной стрелки прямо указывают, сколько вольт напряжения имеет этот ток.

Влияние напряже-

ия на дальность Маленькие электрические станции обы-рөдачиэлектри- кновенно вырабатывают электрический ток ческой энергии. напряжением в 120 или в 240 вольт, станции же большие дают ток гораздо большего напора или напряжения, а именно около 6.000 вольт, 30.000 вольт, а иногда 100.000 вольт и даже больше.

От того, какое напряжение имеет электрический ток, зависит расстояние, на которое можно его выгодно передавать по проволокам, потому что чем больше напряжение тока, тем дальше можно передавать его и тем тоньше *) провода, которые для этого требуются.

Например, допустим, что мы хотим передавать по

[^0]проводам от электрической станции такой ток, который необходим, чтобы осветить село в 1.000 дворов.

Если станция вырабатывает электрическую энергию при напряжении 120 вольт, то можно требуемый ток передать, примерно, только на четверть версты и нужен для передачи очень толстый провод; если станция дает ток напряжением в 240 вольт, то его можно передать на полверсты и по проводу в два раза более тонкому; теперь; если станция производит ток напряжением в 6.000 вольт, то ту же электрическую энергию для освещения нашего села можно передавать уже на расстояние приблизительно 25 верст и по проводу, который в тридцать раз тоньше, чем провод, получавшийся у нас при напряжении в 120 вольт.

Значит, одна большая станция, которая вырабатывает ток высокого напряжения в 6.000 вольт, может по проводам подавать электричество во все села и деревни, находящиеся вокруг нее на расстоянии около 25 верст, а если напряжение посылаемого станцией тока будет 100.000 вольт, то передачу электрической энергии можно производить уже на 200 верст и дальше.

Тон постоянныйи Мы уже знаем, что движение электриток переменный. чества по проводам называется электри-

ческим током

Электричество может двигаться по проводам или все время в одном направлении и тогда получается ток постоянный, или же может очень быстро, например, 50 раз в секунду переменять свое направление и двигаться по проволоке то в одну сторону, то в другую, наподобие того, как колеблется маятник стенных часов.

В последнем случае образуется ток, который называется током переменным.

©nr. 7.
Динамо-машина переменного тока большой мощности (Б200 киловат)

Ток постоянный или ток переменный получается от различных динамо-машин разной системы.

Эти динамо-машины так и называются: либо динамомашины постоянного тока, либо динамо-машины переменного тока (фиг. 7).

В зависимости от того, какой системы динамо-машины поставлены на электрической станции, бывают станции постоянного, тока или станции переменного
тока.

Постоянный ток, вообще говоря, проще, с ним удобнее обращаться, но его нельзя получать при высоком напряжении и, значит, нельзя передавать по проводам на далекое расстояние. Кроме того, нет способов изменять напряжение полученного постоянного тока на другое. Постоянный, - монтерам наоборот, не так прост, как ток вляться, но его можтерам и техникам с ним труднее спрания и стало-быть можно передавать высокого напряжеэлектрической станции поно передавать очень далеко от Электрической станции, притом по более тонким проводам. возможность из- Затем, если переменный ток прояжя попустить
мия переменного через весьма ния переменного через весьма простой неподвижный прибор, и ение. зна- который называется трансформ атором
чения

Фиг. 8.
Трансформатор для изменения
напряжения перемениго
напряжения переменного тока. (фиг. 8 и 9), то можно получить переменный ток какого угодно другого напряжения, - или более высокого, или более низкого - по желанию.

Этооченьважноивотпочему:
Мы уже видели, что иметь высокое напряжение очень удобно и выгодно для передачи электрической энергии на далекое расстояние, но на электрической станции и особенно в том месте, куда электрическая энергия доставляется и где она расходуется для освещения, для вращения моторов или для других целей, там высокое напря. жение опасно, неудобно и невыгодно.

$$
-13-
$$

Как мы увидим дальше, ток высокого напряжения весьма опасен в работе с ним, так как при недостаточно осмотрительном обращении он может убить человека и легко вызывает сильные пожары.

Кроме того, все приборы и приспособления для токов высокого напряжения очень громоздки, тяжелы и очень дороги.

Поэтому, пользуются возможностью изменять напряжение переменного тока и поступают следующим образом:

На самой электрической станции ставят такие динамомашины, которые производят ток не слишком высокого

Фur. 9.
Подвижной трансформатор на колесах.

напряжения. Потом полученный ток ведут по проводам в отдельное совершенно закрытое помещение при станции, в котором поставлены трансформаторы. Пройдя через них, ток сам собой повышает свое напряжение до более высокого и, выйдя из закрытого помещения наружу, идет по тонким проводам, подвешенным на столбах, в разные места на десятки и даже сотни верст.

В том месте, где этот ток хотят употребить для освещения или для работы электродвигателей, или еще для чего-нибудь, - его пропускают опять через трансформатор, в котором он уже понижает напряжение до совсем низкого и идет прямо в лампы или в электро-

> Фиг. 10.
> ТрансФорматор, установленный на столбах.

двигатели. Теперь ток имеет такое низкое напряжение, которое представляет очень мало опасности, удобно для работы и для которого электродвигатели, лампы и все стоили бы для тока вы во много раз дешевле, чем они стоили бы для тока высокого напряжения.

Поясним с́казанное примером:
В 75 верстах от Москвы есть большая электрическая станция, которая называется: Государственная Станция «Электропередача». Поставленные на ней динамо-машины вырабатывают переменный ток напряжением в 6.600 вольт. Этот ток от динамо-машин идет в отдельное закрытое помещение, проходит там через трансформаторы и повышает свое напряжение до 30 и до 70 тысяч вольт. Потом он выходит наружу и по проводам, подвешенным к столбам на фарфоровых изоляторах, передается в Москву, а также по различным другим направлениям в ближайшие города и села. Так, например, имея напряжение 30 тысяч вольт, он подается в село Павлово-Посад на расстояние 17 верст. Здесь в особом каменном помещении поставлен второй трансформатор, в котором подведенный ток понижает свое напряжение с 30.000 вольт до 240 вольт. От трансформатора он по проводам, подвешенным к столбам на фарфоровых изоляторах, идет по улицам Посада и в окрестные деревни. От этих проводов сделаны ответвления, по которым ток подается в дома для освещения и для электрических двигателей. Несчастные слу- Электричечаи от элентри- ский ток, идя ческого тока - по проводам, стремится перейти с одного провода на другой или уйти в землю. Чтобы помешать этому, провода с электрическим током изолируют, т.-е. отделяют друг от друга и от земли такими веществами, которые сквозь себя тока не пропускают. Например, через поля и улицы электрический ток проводят по голым металлическим проволокам, но их подвешивают на фарфоровых или стеклянных изоляторах (фиг. 11). Так как ни стекло, ни фарфор

©ur. 11.
Голые провода для электрического ока, подвешеннь

электричества через себя не пропускает, то ток не мо жет с проводов уйти никуда в сторону.

В домах и других помещениях для проводки электрического тока берут медные проволоки, которые покрыты рези ной и оплетены шелковой или другой пряжей (фиг. 12 и 13).

Фиг. 12.
Изолированный электрический провод:
1.- Медная проволока;
2. - Резиновая оболочка
3. -Обмотка прорезиненной лентой;
4.-Оплетка из пряжи.

Такие провода можно помещать рядом и класть на землю, но электричество все же не будет уходить с них, так как его переходу будет мешать резина, покрывающая провод. При плохом надзоре, или вследствие какой-либо случайности изоляция проводов может повредиться, например, могут разбиться изоляторы, на которых подвешены провода, или может протереться та резиновая оболочка, которая их покрывает, тогда электричество начнет переходить с одного провода на другой или ухо-

Фиг. 13.
Двойной витой изолированный электрический провод (шнур):

$$
\begin{aligned}
& \text { 1.- Пучек тонких медных проволок. } \\
& \text { 2. -Обмотка бумажной ниткой. } \\
& \text { 3. Резиновая оболочка. } \\
& \text { 4.-Оплетка из ниток. }
\end{aligned}
$$

дить в землю. При этом может от электрическоге тока образоваться искра и даже большое пламя, а следовательно может возникнуть пожар того помещения, в котором находятся электрические провода. Поэтому все электрические провода должны подвергаться время от времени осмотру знающих техников, и, кроме того, с ними следует обращаться осторожно и заботиться о том, чтобы

их не сорвать с изоляторов и не повредить покрывающей их оболочки.

Тело человека является проводником для электричества, поэтому, если, стоя на земле, прикоснуться к голому проводу, то электрический ток пройдет через тело в землю.

Если это будет ток низкого напряжения - приблизително до 240 вольт, то прикоснувшийся почувствует только неприятный толчок, который не причинит большого ему вреда.

Но чем выше напряжение тока, тем он делается опаснее.

Ток высокого напряжения; пройдя через тело человека, может сильно обжечь и даже убить на месте

Он опасен не только при прикосновении к проводам, но и при приближении к ним ближе одного аршина, так как электричество, находящееся при высоком напряжении, может перескакивать на небольшие расстояния воздух. Чтобы предупреждать об опасности, все провода аппараты и приборы высокого напряжения должны отмечаться особым знаком, изображающим красную молнию.

Для избежания несчастных случаев от әлектрическоюо тока с людьми и возникновения от него пожаров, неоо ходимо в местностях, где электричество проводится вновь, объяснять населению те опасности, которые угрожаю каждому при невнимательном или недостаточно осторожном обращении с электрическиии проводами и приборами.

Самая же электрическая проводка и все электротех нические установки должны сооружаться людьми знающими, по особым правилам.

При возникновении от электрического тока пожара, а также при несчастном случае с человеком, если он продолжает находиться в соприкосновении с проводом, нужно немедленно известить электрическую станцию. чтобы она прекратила давать в это место ток.

Впрочем, если напряжение тока не выше 500 вольт то для ускорения в этих случаях можно самим разорвать. провода длинной сухой палкой или оборвать с помощь перекинутой через них сухой веревки. При этом нужнн конечно, соблюдать особую осторожность
Чтобы отделить пострадавшего от пиовода,

также подсунуть издали под него широкую деревянную сухую доску

Но если напряжение выше 500 вольт, то ни к прово дам, ни к пострадавшему человеку, пока он еще не от делен от провода, -прикасаться самим нельзя, а надо ожидать прибытия техника или монтера

Для оказания помощи пострадавшему надо вызвать врача или фельдшера, а до тех пор, если пострадавший отделен от тока и находится без сознания, следует положить его на спину, подложив под плечи что-нибудь мягкое, чтобы голова лежала немного ниже, расстегнуть платье, пустить в комнату свежий воздух и, если дыхание слабо, применить искусственное дыхание.
Понятие о работе. Итак, мы уже знаем, что электричество вырабатывается на электрических станциях особыми машинами (динамо-машинами) и затем по проволокам в виде электрического тока передается в то место, где в нем есть. надобность.

Например, если электрическая станция стоит посредине деревни, то можно гіровода от нее протянуть по улице на деревянных столбах на фарфоровых или стеклянных изоляторах через всю деревню за околицу на гумно, где стоит молотилка.

Здесь можно поставить особую электрическую машину или так-называемый электродвигатель *), соединить его ремнем с молотилкой и подвести к нему концы проводов (фиг. 14). Тогда электрический ток потечет по проводам от электрической станции к электическому двигателю и приведет его во вращение; двигатель станет вращаться и с собой на ремне будет вращать мовить на тожно было бы электрический двигатель поставить на телегу, соединить его ремнем с колесами телеги, и тогда телега начала бы катиться. Но мы знаем, что когда телегу катит лошадь или когда лошадь вертит молотилку, то она работает, значит электрический двиатель тоже работает или совершает работу.
Работа бывает различная: легкую телегу катит одна маленькую молотилку две, три лошади и даже больше;

[^1]шой молотилки приходится впрягать их несколько. Точно также тот электрический двигатель, который вертит маленькую молотилку, не сможет повернуть молотилку большую, и в то же время бывают такие сильные электрические двигатели, которые могут везти целый поезд или в течение нескольких минут поднимать на высоту нескольких саженей тысячи пудов груза.

Мощность (сила) әлектрических

Значит электрический двигатель, как и вообще всякую машину, надо различать

ло мощности, то-есть по той работе, которую эта шина производит, скажем, за один час

Если, например, электродвигатель может передвинуть в час груженую телегу на то же расстояние, как и здоровая сильная лошадь, то говорят, что сила этого элекоша ииной овняется одной лошадиной силе, если же электродвигатель в течение часа сможет передвинуть ту же телегу на расстояние в два раза большее, чем лошадь, или на̀ то же расстояние, значит то сама телега будет в два раза тяжелее, то чем этот электродвигатель будет в два раза сильнее, чем первый, и его мощность будет равна двум лосилам ит.д

ских двигателей. Если электродвигатель мощностью в один час, то он соверилу будет работать без остановок диную роботу величиной в 1 лошаработает полря в 10 раз бояд 10 часов, то он, конечно, сделает работу лошадиных сил-часов. этой работы будет 10 Если взять сил-часов.
то-есть мощностью в 10 лошадиния сильнее первого в 10 раз, работать без перерыва, то онадиных сил и заставить его ко же, сколько маленький то он в один час сработает стольдиную силу сработает за 10 часов игатель в одну лошадиную силу сработает за 10 часов и работа этого боль10 лошадиным с ил ам мч ас а ом. Измерение элек
трической энер- Чтобы электродвигатель работал, он долчем больше хотят пония тем больше,

Значит, при работе элект двигателя работы
расходуется электрическая внергия догогателя всегда израсходованной энергии можно эня и о количестве этой которую произвел двигат можно судить по той работе, трическую энергию можно, т. е. эту затраченную элекных силах-часах.

Впрочем, вместо чества израсходованного электрич для определения колиэнергии, употребляют чаще другоства или электрической который приблизительно другую:-«киловатт-час», с третью) лошадиной-силы-часа.

Электричество совершает работу не только, когда с помощью электрического двигателя вертит какую-нибудь машину, но также и тогда, когда оно приводит в действие ка-кие-либо другие приборы, когда оно освещает, нагревает, передает из одного города в другой телеграмму и т. д.

Во всех этих случаях также расходуется электрическая энергия и ее количество также измеряют в киловаттчасах*)

Чтобы измерять затрачиваемую электрическую энергию, употребляются особые небольшие приборы, которые называются

электрическими счетчиками и которые приоединяются к проводам с Электрическим током (фиг. 15).

В этих счетчиках имеются чувствительные механизмы, сами собой лередвигающие колесики с цифрами. Цифры можно видеть сквозь маленькое оконце и они прямо показывают сколько киловатт-часов электрической энергии израсходовано в том месте, где поставлен сччетчик.

Фиг. 15.
Электрический счетчик, изображенный без крышки. Выдвигающиеся в окошечках цифры (54) показывают, сколько израсхо-
довано электрической энергии. - электрической энерги За счет чего по Мы уже знаем, что электрический ток лучается электри- получается от вращения динамо-машины ческая энергия и и знаем также, что динамо-машину надо стоимость. вращать каким-либо двигателем.

Если это будет паровой двигатель, то, чтобы он сам работал, надо ему доставлять пар, а пар получается от нагревания воды в паровых котлах; для согревания же котла надо расходовать топливо, т.-е. дрова, нефть или уголь.

Если динамо-машину вращает нефेтяной или керосиновый двигатель, то хотя здесь и нет котла, все равно приходится сжигать топливо: нефть или керосин,-только не в котле, а в самом двигателе, чтобы заставить его работать.

[^2]И в паровой машине и в нефттном двигателе топлива расходуется тем больше, чем больше электрической энергии производит динамо-машина. Таким образом, на получение каждого киловатт-часа электрической энергии расходуется определенное количество топлива, т.-е. тапрачивается та сумма денег, которую заплатили за это
топливо Правда
Правда, в электрических станциях, работающих ворасходовать не нужноми двигателями, никакого топлива ется как-бы не нужно и электрическая энергия получается как-бы даром, потому что сила воды или ветра, вращающая динамо-машины, нам ничего не стоит. Однако, так кажется только с первого взгляда, в действительэнергии имеет известдый киловатт-час электрической Дело в веет известную стоимостт.
ции нужно вом, что при сооружении электрической станпостройку здания, доеси довольно большие расходы на ку и т. д. здания, на покупку машин, на их установ-

Здание
Здание от времени ветшает и его надо ремонтировать,
машины же изнашиваются новыми.

В среднем можносчитать, что машины на электрической станции могут служить 15 лет, значит все расходы, произведенные на их покупку и ремонт, надо разложить за эти 15 лет произвелено этрической энергии, которое Кроме того, за машинами станцией. ние, т.-е. для каждой стами требуется уход и наблюденый состав машинистов монтении требуется обученный лич.

Расходы по состов, монтеров и пр.
разложить на вырабатываю личного состава надо тоже энергию.

Итак, общая сия трической энергии зависитаждого киловатт-часа элекпричин: энергии зависит от нескольких главнейших Во-первых от стоимости израсходованного топлива, возку. от затрат на его добычу и перек.

Если топливо легко добыть и если оно находится вблизи электрической станции, то и электрическая энергия обойдется де-

шевле, если же топливо добывается трудно и если его приходится подвозить из очень далеких мест, то каждый киловатт-час электрической энергии будет стоить дороже.

Для водяных и ветряных электрических станций эти статьи расхода совершенно отпадают.
Во-вторых, от расходов на постройку и ремонт здания и других сооружений электрической станции, а также от затрат на приобретение машин и на оборудование станции.
В-третьих, от содержания личного персонала станции.
До войны стоимость производства одного киловатт-часа электрической энергии для больших станций была в среднем следующая:

1) Для станций паровых и для станций с нефттяными двигателями 1 киловатт-час обходился около 4-6 копеек.
2) Для станций водяных он обходился уже значительно дешевле-всего около 2 копеек.
электрическая Надо сказать еще, что помимо указанэнергия обходит- ных причин стоимость каждого киловаттчем больше стан- часа электрической энергии оказывается ция, которая
производит. ее тем дешевле, чем больше станция, которая эту энергию производит.

Получается так потому, что более сильные машины работают более выгодно, чем машины небольшие-слабые, а также и потому, что большое дело вообще бывает вести выгоднее, чем дело маленькое.

Например, паровая большая станция, на которой установлено машин на 1.000 лошадиных сил, могла вырабатывать электрическую энергию по себестоимости 5 коп. за 1 киловатт-час, а для такой же, только меньшей, паровой станции-в 30 лошадиных сил каждый ки-ловатт-час электрической энергии уже обходился в три раза дороже.
выгода работы этектрической
станиии при пол- динамо-машины на электрической станции

Еще очень важно также и то, чтобы ной нагрузне. работали, как говорят, при полной нагрузке, т.е. чтобы они давали полностью ту электри-

ческую энергию, на которую предназначены. Так, например, если динамо-машина построена с таким расчетом, что может давать в час 100 киловатт-часов электрической энергии, а работать будет при нагрузке меньшей и станет, скажем, производить в час только 10 киловаттчасов, то каждый киловатт-час электрической энергии обойдется гораздо дороже, чем в том случае, когда машина работала бы полностью

Поэтому надо стараться, чтобы электрическая станция работала, по возможности, всегда одинаово при полной нагрузке.
Например, если бы электрическая станция давала ток почтко для освещения, то вечером и ночью, когда горят много электричесии станция должна была бы производить лика; днем греба и темные когда освещать приходится только понемного и нагрузка стании, электрической энергии нужно чит станция игрузка станции была бы очень мала, а знаНо днем раоотала оы невыгодно.
сельско-хозяйственные светло, производятся обыкновенно сортировка, днем рые работы: уборка хлеба, молотьба, сортировка, днем же работают кузницы и различные
мастерские.

Поэтому можно с очень большой выгодой для станции и с большой пользой для сельских хозяев и мастеровых станкам и там: молотилкам, веялкам, горнам, ткацким станкам и т. п. приспособить электрические двигатели. ческую энергию, которая потреблять днем ту электрит. е. как говорят, могут вотатся на станции свободной, электрической станции.
Как производится
расчет за эле-
ческую энөр- снабю электрическая станция гию. электрическим током различные ных лиц, то она обыкновеннорские, учреждения и частЭлектрическую энергию в Плата взимается или эно которую они израсходовали. тарифу. В первом случае втчику или пооптовому или в каждой отдельной квартирдм отдельном хозяйстве чество, устанавливается элартире, где проведено электрипрямо точно показывает израсический счетчик, который

энергию. Через опре̇деленные промежутки времени, например, один раз в месяц, все установленные счетчики обходит специальный контролер от электрической станции и записывает те числа, которые показывает каждый счетчик. Затем по записям высчитывают, сколько израсходовано электрической энергии и сколько надо за нее заплатить. Способ уплаты за электрическую энергию по счетчику, конечно, самый точный и самый удобный, но он не всегда возможен, потому что счетчики стоят довольно дорого, а в настоящее время их, кроме того, очень трудно достать, так как изготовляются они только за границей. Поэтому часто применяется второй способ оплаты по оптовому тарифу.

При нем назначается определенная годовая плата за пользование каждой установленной электрической лампой и каждым электродвигателем в зависимости от их величины или силы (мощности). Контролеры от станции осматривают время от времени электрические установки и следят, чтобы потребители без ведома станции не присоединяли новых ламп или новых электрических двигателей.

При оптовом тарифе бывают многие злоупотребления. Потребители, зная, что плата остается все равно одинаковой, часто без всякой надобности зажигают лампы, когда в помещениях еще достаточно светло, или забывают их тушить, уходя из дома. Таким образом, электрическая энергия, которая могла бы с пользой быть израсходована на другое дело, теряется совершенно напрасно. В настоящее время, когда экономическое положение страны очень тяжело, надо особенно помнить о бережливости, и в селах и в деревнях самому обществу следить за тем, чтобы жители не расходовали понапрасну электричества.

Разлинные цены Конечно, электрическая энергия как та,
на электрическую на элентрическую которая идет в лампочки и дает освеще. щение и за рабо- ние, так и та, которая идет в электричету элентрических ские двигатели, - совершенно одинакова, однако электрические станции считают ее по разным ценам.

Так, например, в Петрограде 1 киловатт-час электрической энергии для освещения стоил до войны 33 копейки, а для электродвигателей только 18 копеек.

Объясняется это уже указанной выше выгодой для станции работать круглые сутки при полной нагрузке.

Отпуская энергию для электродвигателей по низким ценам, электрические станции тем самым вызывают установку большего числа электродвигателей, а так как последние работают, главным образом, днем в светлые часы, то потребляют ту свободную электрическую энергию, которая в темные часы суток расходуется на освещение.

Чтобы производить рассчет за энергию по двум ценам, обыкновенно устанавливают два отдельных счетчика: один для освещения и другой для моторов.

II. оощая электрификация народного хозяйства России почему она необходима и как ее хотят выполнить.

Механнзация тру- Людям длія удовлетворения их потребнода или замена ра- стей приходится добывать или произботы человена ра.
ботой машины. вод и ть множество разнообразных вещей и предметов, как, например: пищу, одежду, предметы домашнего обихода, топливо, строительные материалы для сооружения жилищ и еще многое другое.

Добыча или производство чего бы то ни было самим человеком требует затраты его силы или его труда, и люди с очень давних времен старались различными способами уменьшать и облегчать себе ту работу, которую им нужно было затрачивать на производство.

Уже очень давно они начали применять силу животных и, вместо того, чтобы волочить самим соху, стали впрягать в нее вола или лошадь. Мы знаем, что сила животных применяется и до сих пор для перевозки тяжестей, а также в сельском хозяйстве для вспашки, бороньбы, уборки урожая, для молотьбы и помола. Несколько позднее, люди научились использовать для облегчения своего труда силу воды и ветра; так, всем хорошо известны водяные и ветряные мельницы и крупорушки.

Приблизительно сто лет назад человек отыскал себе на подмогу новую силу - силу пара и начал строить паровые машины (фиг. 16), а потом и двигатели внутреннегосгорания *) (фиг. 17), которые заставил работать для того же производства необходимых ему продуктов и материалов.

Одна паровая машина давала возможность заменить своей работой работу десятков, сотен и даже тысяч человек; она могла дать такую силу, для получения которой

[^3]прежде нужно было бы собирать громадные артели рабочих или сгонять табуны лошадей.

Фиг. 16.
Паровая машина.
Раз теперь в любом месте можно было, поставив па ровую машину, иметь от нее какую угодно большую силу, которые приводлумывать различные станки и механизмы, которые приводились бы в движение от этой машины и которые механическим способом могли делать все то, что прежде нужно было изготовлять руками.

Вместо ручных пил, ручных прялок, ручных ткацких станков, ручных цепов, появились механические пилы, станки, молотилки и так далее, которые работали от парового двигателя.
Значчние механи- Замена ручного труда человека работой
заиин трдда и са-
бое развитие еев станка и машины называется зации труда и сла-
бее разнтие ене в станка и машины называется механия
росиии

России. цией труда. У насв России механизациятрудадо войныбыларазвитакрайнеслабо и большинство работы производилось силою человека или домашних животных. Например, если сравнить с Севертало мащин й, то окажется, что в ней до войны рабодиных машин общей мощностью на 130 миллионов лошадиных сил, а у нас их было всего на 13 миллионов лошадиных сил, то-есть в десять раз меньше. Конечно,

благодаря этому мы и производили разных товаров тоже гораздо меньше. Многого из того, что мы вырабатывали, не хватало для нас самих, и эти товары приходилось выписывать из-за границы.

Фur. 17
Большой нефтяной двигатель внутреннего сгорания (ДИЗЕЛЬ) мощностью в 150 лошадиных сил.

В Америке же, наоборот, там не только изготовлялось все необходимое для населения, но и оставались еще

большие излишки, которые можно было продавать и вывозить в другие страны

Даже хлеб, хотя до войны Россия и отправляла его сотни миллионов пудов за границу, производился у нас во много раз в меньшем количестве, чем мог бы произволиться если принять во внимание громадные пространства России и то, что почти три четверти ее населения занимаось земледелием.
Так, например, до войны зерновых хлебов в Северной Америке на одну душу населения собиралось около 55 пу, а в России только 22 пуда.
Причина этому та, что в Америке полевые работы выполняются, главным образом, машинами, у нас же почти женной в по-старинному обрабатывалась сохой с впря-

Вообще машиной крестьянской лошадью.
чает труд человека, где бы она ни применялась, облегпроизводство. Паро
те выгоды, какие она после своего изобретения показала распространяться во всехет дать, и начала очень быстро Появились пароходы исех областях народного хозяйства. шина перевозила грузы иаровозы, в которых паровая мана заводах паровые двигатели и по суше; на фабриках и ные механизмы, а в сигатели вращали станки и различняться локомобили в сельском хозяйстве начали примеросиновый двигати, в которых паровая машина или кемноголемешные плуги могли передвигать по полю большие работы.

Некоторые недо-
статки тепловых
двигателей, бла- ствека тепловые двигатели *) были единэодаря квигторым применять двигателями, которые можно было всегда удобны ков и механияом месте для вращения стандля применення. тяжестей нение в промышленнй, они имели громадное распростразяйстве, однако сами по в транспорте и сельском хо недостатками и не всегла себе они обладают некоторыми Действительно всегда удобны.

Kas

воторое получаепи двитатедям -

всего необходим пар, а, следовательно, при каждом двигателе надо иметь еще отдельный паровой котел, который занимает большое помещение и который требует доставки топлива. Правда, пар можно подводить к нескольким паровым двигателям по трубам от одного общего котла, но трубы стоят дорого, занимают много места и, кроме того, вести по ним пар на большое расстояние нельзя, так как он охладится и превратится в воду.

Для двигателей внутреннего сгорания, пара и котла не нужно, но все равно к каждому из них необходимо доставлять топливо, то-есть нефть, керосин или бензин. Кроме того, для этих двигателей надо иметь особые, довольно громоздкие приспособления для пуска в ход.

Вообще, пускать в ход паровые двигатели, а особенно двигатели внутреннего сгорания довольно трудно и долго лоэтому их очень невыгодно и неудобно применять для вращения таких станков и механизмов, которые надо часто останавливать.

Трудно также заставлять эти двигатели переменять свой ход, т.-е. вращаться в противоположную сторону, а между тем это бывает очень часто необходимо.

По своему устройству двигатели паровые и двигатели внутреннего сгорания весьма сложны и, чтобы управлять ими, надо всегда иметь особого обученного человека.

Затем нужно сказать, что эти двигатели могут рабо тать выгодно, если они достаточно велики, но если они малы, то расходуемое топливо и уход за ними обходятся слишком дорого и работа их становится менее выгодной.

Представим себе, что мы имеем много станков и механизмов, которые надо приводить во вращение от парового двигателя или от двигателя внутреннего сгорания

Если это станки фабричные, то в таком случае стараются ставить их возможно теснее друг от друга и их приводные шкивы (колеса, от которых вертятся станки) соединяют ремнями со шкивами или колесами, насаженными на один общий длинный вал.

В одной стороне фабрики устанавливают тепловой двигатель, колесо которого соединено при помощи широкого толстого ремня с колесом, насаженным на конце указанного длинного вала, проходящего насквозь через все фабричное помещение.

Когда этот паровой двигатель или двигатель внутрен-

него сгорания начинает работать, то он своим ремнем приводит во вращение вал со шкивами и от них посредством отдельных ремней начинают вращаться все поста вленные в этом помещении станки. Если какой-либо ста нок надо остановить, то скидывают ремень с его шкива; если же надо пустить, то этот ремень опять надевают.

Приспособление, состоящее из описанного вала со шкивами и ремнями, называется передаточным приспособлением или трансмиссией

Общие трансмиссии для большого обще неудобны и дороги, но если фабрика иланков воооще неудобны и дороги, но если фабрика или завод работают от теплового двигателя, то без них обойтись
нельзя. нельзя.

Длинные трансмиссии работают плохо, а, кроме того, часто фабри каили завод настолько велики, что поместить все станки в одном помещении невозможно, тогда в каждом цехе или в каждой отдельной мастерской приходится ставить отдельный двигатель и отдельный котел (если этот двигатель паровой), к каждому двигателю приходится доставлять топливо и, наконец, для каждого двигателя надо иметь на все время работы отдельного че-
ловека.

Еще хуже получается, если все станки и механизмы стоят по-одиночке, далеко друг от друга. Тогда уже при каждом станке или механизме, как бы мал он ни был, надо иметь или отдельный паровой двигатель с отдельным паровым котлом, или отдельный двигатель внутреннего сгорания; к каждому из них нужно подвозить топливо и для каждого двигателя надо держать еще одного, а если работа производится долго, то для подсмены и нескольких машинистов.

В сельском хозяйстве такой случай бывает особенно часто, так как молотилка, которую мы хотим заставить работать от двигателя, стоит на гумне - в одном конце деревни, насос, который должен качать воду, может стоять у реки в другом конце, кузнечная и слесарная мастерская с горном и станками - посредине деревни, а двигатель, - должен работать, для которого нужен тоже двигатель, - должен работать в поле.

Потом крестьяне могут заниматься кустарным промыткацкий станок, - их тоже хоро встретить токарный или ткацкий станок, - их тоже хорошо было бы приводить

в движение не ногой или рукой, а механическим способом, но парового и керосинового двигателя в избе поставить нельзя.

Через несколько десятков лет после изоллектричесних бретения парового двигателя и еще не так двигателей пе- давно удалось применить для движения станред двигателя. ков и машин силу электричества. Начали строиться электрические двигатели или электрические моторы, которые в очень скором времени стали вытеснять тепловые двигатели и теперь считаются наиболее удобными и выгодными при механизации производств.

Посмотрим, какие же выгоды и удобства получаются от применения электричества и чем объясняется чрезвычайно быстрое его распространение во всех странах.

Прежде всего, как мы уже знаем, электричество можно вырабатывать в одном месте, а потом передавать по проводам на далекие расстояния.

Поэтому повсюду, где мы хотим иметь двигательную силу, где у нас стоит какой-либо станок, сельско-хозяйственное орудие, насос и так далее, там мы можем поставить электродвигатель той силы, какой нужно, и можем подвести к нему от станции по проводам электрический ток. Тогда уже не придется думать о том, чтобы в каждое такое место доставлять топливо и не надо нанимать для каждой установки отдельных машинистов для ухода за двигателем. Достаточно иметь только одного монтера для нескольких моторов, который бы их время от времени осматривал.

Электрический двигатель по своему устройству очень прост, его пускать, останавливать или изменять его ход на обратный можно очень быстро и легко, так что управлять им может сам работающий на том станке или машине, которые этот двигатель вращает.

При электрическом двигателе не нужно иметь ни парового котла, ни громоздкого пускового приспособления, он требует мало места и его можно поставить в любом помещении и в любой избе.

Хотя большие электродвигатели работают вығоднее маленьких, но эта разница между ними не так заметна, как между большими и малыми паровыми машинами или двигателями внутреннего сгорания.

Эмевтричество. А. Куливовский.

Таким образом, благодаря применению электрических двигателей, в общем получается следующее: вместо того, чтобы ставить большое число мелких паровых двигателей или двигателей внутреннего сгорания, занимающих много места, невыгодно работающих, требующих доставки топлива и большого ухода, мы можем поставить электроболее выгоднорым маньше места, работают юолее выгодно, не требуют никакого топлива и нуждаются в очень малом уходе. Необходимая для этих моторов электрическая энергия будет подводиться к ним по

Для вращения же динамо-машиный станции.
вырабатывать на этой станции электричоторая должна мы можем применить уже сильную паровукую энергию, сильный нефтяной двигатель. Тогда повую машину или подвозить только ввигатель. Тогда топливо придется машинистов только в одно место, держать специальных машинистов только для этого двигателя, а сам двигатель шой мощности (силы).

Чтобы сократиты).
трическую станцию стараются обыкновене топлива, элекместе, где этого топлива имеется станцию в некоторых местностях можтаточно. Вдобавок ботать силою воды, тогда уже работа можо заставить рагателей совершенно не будет зависеть электрических дви-

Кроме того, от проводов, идущих к кажовому товива. ческому двигателю, можно брать электричество также и для иных целей, например, для освещения элтво также и ния и еще для многих других. освещения, для нагрева-
Необходимость
широкого приме.
Как уже было
щироного приме. России во всех обласазано, производство в нения әлентриче- ства и раньше было значительно вояйстве ста хозяйства в хозяйстве ства и раньше было значительно слабее, чем промышленно Росси. за границей. Затем годы войны и революции промышленность и теперь перед расстоили хозяйство и нашу задача скорее поправить создавшееся тяжероит большая Чтобы быстрее и вернее помочь всяком тяжелое положение. брать надежный и быстрый всякому делу, надо уметь выствительным способом длы способ. Таким наиболее деймышленности России должно поятия хозяйства и проприменение электричества или явиться самое широкое России. электричества или электрификация

Мы уже видели, что чем выше поставлена механизация производства, то-есть чем больше машин и двигателей, чем лучше и чем дешевле они работают, тем успешнее развиваются хозяйство и промышленность и тем больше вырабатывается (производится) нужных и полезных людям вещей и продуктов.

Из всех же видов двигателей для механизации производства, как мы только что говорили, самым удобным и выгодным является двигатель электрический.

Он может быть приспособлен для каждого станка или машины, скорость его можно изменять по желанию (регулировать) и даже легко достигнуть того, чтобы управление таким двигателем, т.-е. его пуск, остановка и изменение скорости производились по мере надобности сами собой автоматически при помощи особых приборов без всякого участия человека.

Кроме того, этот двигатель при своей работе наиболее безопасен для жизни и здоровья людей, в сравнении с двигателями паровыми и двигателями внутреннего сгорания.

При всем том надо иметь в виду, что электричество или электрическая энергия в хозяйстве и промышленности приносит пользу не только тогда, когда она идет для работы электрических двигателей. Электрический ток применяется в производстве также для других целей: так можно построить особые электрические печи, в которых ток дает столь высокую температуру, что, благодаря ему, можно выплавлять металлы из руды. Затем он может действовать химически, и посредством пропускания электрического тока через одни вещества-можно получать из них вещества другие. Например, если ток высокого напряжения пропускают с одного провода на другой через воздух, то можно получить особое вещество, которое называется азотной кислотой. Эта кислота идет для очень многих целей. Между прочим, ее можно смешать с обыкновенной известью и получить селитру, являющуюся прекрасным удобрением в сельском хозяйстве.

Наконец, электричество дает наилучший и наиболее безопасный в пожарном отношении способ освещения и это тоже очень важно для нашего хозяйства и. промышленности.

Например, теперь в наших селах и небольших горо-

дах, где не устроено электричества, очень много мастер нет керосина и нечем работать по вечерам, потому что чество, а стало быть и элещаться. Между тем, электриполучать, сжигая освещение можно ности.

Необходимость

Если электричество столь важно для подснабжения Рос- ности народного хозяйства и промышлен-

сии. ности России, то прежде всего надо сделать получать в любом месте электрический ток можно было жении России электричестводо надо позаботиться о снабснабжении. Электричеством или об ее электро-

Районная пароеа Фиг. 18.

.ar электрическая станция.
Районные элекции. стӑн- выгоднее получать мы знаем, выгоднее получать электричеств что всего

ших станций. Для постройки этих станций можно выбрать такие места, где есть много топлива или еще лучше, где есть совершенно даровая сила воды*).

Выгодно также заставлять эти станции вырабатывать электрический ток высокого напряжения и передавать его по проводам во все стороны на десятки и сотни верст.

Фиг. 19.
Электрическая магистраль высокого напряжения (100.000 вольт).
[Іодобные электрические станции, снабжающие электрической энергией не только свой город или свою де-
*) 0 спде вегра тут не приходится говорить, потому что ветряные эдектрические станции можно строить только небольшой мощности (свды).

ревню, но целый большой район, называются районными электрическими станциями (фиг. 18), а идущие от них во все стороны главные провода высоко(фо напряжения-электрическими магистралями (фиг. 19).

Если в каком-нибудь месте этого района хотят воспользоваться электрической энергией, то от ближайшей магистрали делают ответвление и ставят будку с трансформатором или трансформаторную подстанци ю (фиг. 20 и 21). От нее получают уже ток низкого напря-

жения, который и ведут в те места, где есть потребность в электричестве (фиг. 22).

Районных станций, которые бы передавали электри чество далеко и снабжали им целую область, до сих пор у нас построено очень мало, но есть много больших электрических станций в городах и на некоторых заводах.

Эти станции можно сравнительно легко усилить, поставив на них добавочные динамо-машины и переделать в станции районные.

Фиг. 21.
Небольшая трансформаторная подстанция
в деревне.

План элентро-
снабжения
России.
В настоящее время особой комиссией инженеров и других специалистов („Государственная Комиссия по Электрификации России") разработан план снабжения России электрической энергией ${ }^{*}$).

По этому плану предположено использовать имеющиеся большие станции, расширив некоторые из них и переделав на станции районные, а также построить

[^4]несколько новых очень мощных (сильных) районных электрических станций

Проведение полного электроснабжения России намечено в две очереди: в первую очередь должны быть снабжены электричеством те области, которые наиболее важны в отношении промышленности и земледелия, а во-вторую очередь-все остальные заселенные области России.

В работы первой очереди входит сооружение 30 новых мощных районных станций, из них - 10 гидравлических (водяных) и 20 паровых.

Причем, кроме отмеченных на прилагаемой карте 27 станций европейской части страны, предполагается соорудить одну паровую электрическую станцию в Кузнецком районе Западной Сибири и по одной гидроэлектрической станции в Алтае и Туркестане.

©ar 22.
Снабжение электрической энергией большого района.
Ток, вырабатываемый двумя большими районными станциями (1 и 1), повышает свее напряжение в главных трансформаторных подстанциях до 30,0 вольт и проводит:я в различные стороны по проводам,
подвешенным на столбах. На рисунке видно много понижательных подвешенным на столбах. На рисунке видно много понижательных трансформаторных падстанций, в которых ток получает низкое напряжение
и может расходоваться для освещения и работы моторов в окресностях
этих подстанчий. этих подстанций.

Фur. 23.
Районная электрическая станция, работающая силою воды (Гидроэлектрическая станция)

Паровые станции будут питаться топливом, имеющимся в той местности, где станции предполагается построить. Так, станции в подмосковном районе будут работать, главным образом, на торфуу, которого здесь много; некоторые станции, расположенные по реке Волге, будут употреблять, кроме друғого топлива, также и опилки с находящихся здесь больших лесопильных заводов, а станции в Донецком бассейне, где добывается каменный уголь, должны, конечно, отапливаться этим углем.

Динамо-машины, которые предполагается поставить на новых тридцати станциях, будут иметь все вместе общую рабочую мощность в полтора миллиона киловатт.

От станций пойдут в разные стороны провода; по одним из них будет передаваться ток при напряжении в 115 тысяч вольт на очень далекие расстояния (200 верст), а по другим он будет передаваться на менее далекие расстояния под напряжением в 35 тысяч вольт.

Полную постройку всех станций и всех электрических сетей первой очереди Государственная Комиссия по Электрификации России находит возможным выполнить в течение десяти лет, а общая стоимость этой постройки определяется приблизительно в 834 миллиона рублей золотом, считая материалы и работу по довоенным ценам.

Применение элек- После осуществления плана электроснабтричества в раз- жения России, можно будет самым широнародного хозяй- ким образом применить электричество во
ства. всех областях народного трим, как это можно сделать и какие выголы может пать такое применение.

Элентрифинация Прежде всего рассмотрим электрифитранспорта. кацию транспорта, то-есть различных способов перевозок. В общем хозяйстве каждой страны весьма важно продукты и материалы, вырабатываемые в одном месте, перевозить туда, где их не производится Например, нефть и керосин, которые добываются на Кавказе, приходится перевозить в другие места России, а из Московской губернии, имеющей много мануфактурных фабрик, везут на Кавказ ситец и другие материи, потому что там этих тканей не вырабатывают.

Для транспорта внутри государства наибольшее зна-

чение имеют перевозки по железных дорогам и перевозки по водным путям, то-есть, главным образом, по рекам.

До войны Россия имела довольно большое число железных дорог, но при их постройке не всегда обращали достаточное внимание на хозяйственное положение различных областей государства. Многие железнодорожные линии были проведены не по тем направлениям, как это следовало бы, и, кроме того, перевозка товаров по железным дорогам обходилась сравнительно дорого и была недостаточно скора.
--Теперь все знают, что за последние годы положение с нашим железнодорожным транспортом еще более ухудшилось, так как пути износились, подвижной состав в большей своей части испорчен и для правильного движения поездов не достает топлива.

Способом скорее восстановить железнодорожный транспорт и сделать его пригодным для наилучшего об служивания хозяйственных нужд страны,-является его электрификация

Подэлектрификацией железных дорог надо понимать замену паровозов электровозами (фиг. 24), т.-е. поставленными на колеса сильными электри-

ческими двигателями, которые так же как и паровозы могут везти за собой целые поезда. Чтобы снабжать электровозы током, над железнодорожным путем вдоль его подвешиваются медные голые провода, питаемые током от электрической станции.

С этих проводов электрический ток, переходит в двигатели электровозов по особым металлическим дугам, приделанным сверху электровозов и прижимающимся пружинам к проводам. Когда электровоз движется, с ним вместе двигается дуга и скользит по натянутому над нею проводу, так что ток все время может переходить с проводов в двигатель электровоза.

Фиг. 25.
Электрический трамвайный вагон для перевозки пассажиров.
Благодаря замене на железных дорогах силы пара силою электричества достигаются следующие выгоды:

Во-первых, с помощью электровозов можно перевезти по одним и тем же дорогам за одинаковое время почти вдвое больше грузов, чем с помощью паровозов.
Во-вторых, самих электровозов для этого нужно почти втрое меньше, чем паровозов, и, кроме того, каждый электровоз стоит дешевле паровоза.
В-третьих, достигается большая

плива, так как при электровозах или, как говорят, при „электрической тяге его расходуется почти в два с половиною раза меньше, чем при тяге паровой.

При этом надо иметь в виду, что на электрических станциях при выработке электричества можно сжигать, например, торф, опилки и вообще такое топливо, которое не годится для паровозов.

А если еще электрическая энергия для электровозов может получаться от станции, работающей силою воды, тогда расхода топлива для движения электрических поездов и совсем не понадобится.
В-четвертых, движение электрических поездов (фиг. 26.) происходит более правильно и безопасно, чем движение поездов паровых.

Фиг. 26.
Электрический поезд на железнодорожной станции.
В-пятых, ремонт и содержание электровозов обходится втрое дешевле, чем ремонї и содержание паровозов.
В-шестых, для обслуживания движения на железной дороге при электрической тяге надо всего

машинистов иихпомощников почти в три раза меньше, чем при тяге паровой.
Произведена электрификация будет не на всех железвых дорогах России, а только на некоторых-на главнейших.

Из существующих железнодорожных линий уже намечены такие, которые имеют наибольшее значение для народного хозяйства, и они будут переделаны на электрическую тягу.

Пока в первую очередь в течение ближайших десяти лет предполагается электриф̆ицировать линии:

1) Москва - Тула - Орел - Курск - Бахмут-Мариуполь.
2) Царицын - Лихая - Никитовка - АлександровскКривой por.

Обе эти большие линии, после их переделки на электрическую тягу, дадут возможность самым дешевым и скорым способом вывозить по трем направлениям каменный уголь, добываемый в Донецком бассейне, а именно: на север по направлению к Москве, чтобы снабжать им расположенные в центральной России фабрики и заводы, затем на юг к Мариупольскому порту для отправки его по морю за границу в обмен на нужные нам заграничные товары, и наконец, на восток в Царицын для перегрузки его на баржи и для дальнейшей отправки по Волге в разные места России.

Кроме этих больших линий, в первую же очередь будет произведена электрификация некоторых пригородных железных дорог и подъездных путей. Всего в первые десять лет предполагается электрифицировать три с половиною тысячи верст железных дорог, что обойдется в 283 миллиона рублей золотом, считая работы и материалы по довоенным ценам

Водный транспорт, хотя может работать вследствие замерзания рек только часть года, тем не менее очень важен для народного хозяйства, так как дает весьма дешевый способ перевозить большие количества товара.

Чтобы облегчить и ускорить движение судов по рекам, а также перегрузку товаров с железных дорог на суда и обратно с судов на железнодорожные поезда, предполагается в дальнейшем произвести электрификацию

самых важных пристаней, установив на них электрические подъемники для разгрузки и перегрузки товаров, устроив электрические подъездные пути и произведя другие электрические оборудования (фиг. 27).

Фиг. 27.
Электрификация пристани.
Электрические подъемники для выгрузки товаров с пароходов
и барж и для перегрузки в железнодорожные вагоны.
Значение электри- Как известно, Россия в настоящее вре-
фикаиии для снаб фикаиии дла снаб- мя переживает кризис с топливом.
пливом и ея по. Топлива не хватает не только для ра. мощьвустранении боты фабрик, для движения железных до-пережнваемогото- ооты фабрик, для движения железных до-
пливного нризиса. рог и пароходов, но его не хватает в городах даже для отопления жилищ.

Недостаток в топливе начал чувствоваться уже до войны, потому что в то время наша промышленн ость быстро развивалась и требовала топлива больше, че м его добывалось в России.

Поэтому приходилось покупать с каждым годом все больше и больше каменного угля в других странах. Рассчитывать теперь на покупку угля за границей, по к райней мере на ближайшие годы, мы не должны, так как

там после войны тоже испытывается значительный недостаток в топливе.

Итак, надо найти способ устранить топливный кризис своими собственными силами и не только поднять снабжение топливом до тех размеров, в каких оно нахо дилось до войны, но надо еще суметь получить топлива значительно больше, чтобы сильнее развить промышленность и восстановить наше разрушенное хозяйство

В России имеются большие природные запасы само го разнообразного топлива:-у нее есть каменный уголь торф, нефть, горючие сланцы и громадное количество лесов.

Из этих запасов нужно топливо добыть, перевезти его в те места, где оно необходимо, и употребить с наибольшей пользой в дело.

Главнейшим топливом у нас были и останутся еще надолго-дрова.

В последние перед войной годы их сжигалось около 25 миллионов кубов в год. Заготовка дров производилась, исключительно, вручную и требовала около пятисот тысяч человек рабочих, а для вывозки такого количества дров гужем надо поставить около 2 миллионов лошадей и к ним миллион возчиков.

Теперь у нас взрослого населения поубавилось и ос талось мало лошадей, поэтому, чтобы заготовлять столько же дров, сколько и раньше, и даже больше прежне-го,-придется применить электрические машины для рубки, пилки и колки; для вывоза же дров из леса в тех местах, где заготовка производится большими партиями, надо устраивать переносные электрические железные дороги.

Другое очень важное в промышленности топливокаменный уголь. Он добывается (выкапывается) из земли. Те места, где производится его добыча, называются каменноугольнымикопями.

В копях устраивается несколько глубоких колодцевшахт, от которых идут в разные стороны длинные коридоры. Чтобы в копях можно было работать, они должны иметь много различных добавочных устройств и приспособлений. Прежде всего необходимы машины для спуска и подъема в шахты рабочих, а также для подъема наверх добытого угля

Потом нужны машины для проветривания копей, для откачки из них воды и для многих других целей. Так как эти многочисленные машины и механизмы бывают расположены в различных местах и сверху земли и под землей, то для их вращения наиболее удобно и выгодно применять электрические двигатели.

Применение электричества в каменноугольных копях улучшает условия работы и поэтому углекоп может добывать гораздо больше угля.

Кроме того, теперь в Америке изобретены электрические подбойные машины, которые еще более увеличивают добычу угля.

Вообще, как показывают заграничные примеры, при электрификации каменноугольных копей число рабочих может быть сокращено почти в четыре раза.

Если рассмотреть также добычу остальных сортов топлива, т.-е. торфа и нефти, то окажется, что и здесь необходимо самое широкое применение электричества.

Топливо недостаточно добыть, -его надо еще доставить в те места, где оно требуется. Но мы уже видели, что именно с целью улучшить и удешевить перевозку нашего Донецкого каменного угля считают необходимым произвести электрификацию железных дорог.

Вместе с тем надо иметь в виду, что, благодаря общей электрификации России, перевозить топлива придется гораздо меньше, чем прежде, так как большие районные электрические станции будут построены в местах нахождения топлива и они уже будут передавать по проводам электрическую энергию на десятки и сотни верст.

Да и самый расход топлива при общей электрификации России будет значительно ниже того, который получился бы, если бы электрификации не производилось. Действительно, в последнем случае каждый завод, каждая мастерская, каждый паровоз тратит топливо, сжигая его в небольших паровых котлах, которые работают менее выгодно, чем большие котлы районных электрических станций.

Равным образом громадное сбережение в общем расходе топлива дадут те электрические станции, которые будут работать силою воды (гидроэлектрические станции). Элентрификация Сельское хозяйство дает не только проеельского хозяи- дукты питания для населения, но оно про-
ства. изводит также большую часть сырья, иду-

щего в дальнейшую переработку и необходимого для развития многих отраслей промышленности. Так, например, вся ткацкая (текстильная) промышленность зависит целиком от сельского хозяйства, от которого она получает в качестве сырья-лен, хлопок, шерсть и шелк.

Хотя в России сельским хозяйством занимается почти три четверти населения, однако в ней его производительность еще очень низка.

Чтобы получать от нашего сельского хозяйства больше продуктов, надо возможно шире заменить труд и силу человека работой машины и двигателя.

Достигнуть этого всего удобнее и выгоднее можно, применяя электричество, то-есть посредством электрификации сельского хозяйства. О ней будет сказано подробнее в следующей главе.

электрифинаиия Для России сейчас чрезвычайно важно промышленности. скорее пополнить недостаток в различных товарах, а для этого необходимо позаботиться о развитии промышлености, то-есть надо не только пустить все работавшие до войны мастерские, фабрики и заводы, не только построить и открыть новые, но еще надо сделать так, чтобы все эти заводы, фабрики и мастерские стали работать, как можно лучше и выгоднее и вырабатывать, как можно больше, -или, как говорят, надо поднять производство.

Производство поднимается и улучшается от замены силы и ручного труда человека работой станка и машины, и притом зависит от выбора наиболее подходящих и наиболее выгодных машин или двигателей, а мы уже видели, что в этом отношении легче всего достигнуть хороших результатов с помощью электричества (фиг. 28).

Затем для развития промышленности всегда непбходимы следующие условия:

Во-первых, достаточное количество рабочих рук.
Во-вторых, сырье или материалы.
В-третьих, топливо.
В-четвертых, транспорт, то-есть возможность вывозить изготовленные товары туда, где в них чувствуется потребность.
При большом населении России недостатка рабочих рук ожидать нельзя, а, кроме того, благодаря примене-

нию электрификации, число необходимых рабочих сильно сокращается.

Что же касается сырья, топлива и транспорта, то мы уже видели, что все эти вопросы тоже разрешаются Электрификацией. Значит электрификация, улучшая снабжение топливом, улучшая сельское хозяйство, производящее большую часть сырья, и улучшая транспорт, тем самым способствует также развитию нашей промышленности.

Әлектрификация ткацкой фабрики.
Каждый из изображенных на рисунке ткацких станков приводится во вращение отдельным электрическим двигателем.

Затем надо помнить, что во многих областях промышленности (добыча некоторых металлов и получение многих химических веществ) само производство требует электричества. При общей же электрификации России можно будет всегда в любом месте легко и просто получать дешевую электрическую энергию.

Оозможность осу- Итак мы, рассмотрев общий план элек ществления плана трификации России, видим, что его выполэлентрифинации. нение может иметь громадное значение для восстановления и развития нашего народного хозяйства.

Но вместе с тем у многих является вопрос, как приниматься за эту электрификацию,-за постройку огром-

ных электрических станций и сетей, когда у нас нет ни машин, ни приборов для этих станций, и нет материалов для их сооружения.

Разумеется, без заграницы в этом деле нам обойтись невозможно. Большую часть всего необходимого придется приобрести в других странах.

По приблизительному подсчету общий расход на электрификацию первой очереди, считая и электрификацию железных дорог, выражается приблизительно в сумме одного миллиарда двухсот миллионов рублей золотом. Если вспомнить, что эту электрификацию предполагается выполнить в течение десяти лет, то значит в год придется расходовать по 120 миллионов рублей.

Для государства эта сумма сама по себе не слишком велика и покрыть ее можно товарообменом с заграницей, а также временйой уступкой небольшой части наших природных богатств для разработки иностранцам.

И, как показывает подсчет, те выгоды, которые принесет электрификация, окупят в самое короткое время все расходы, на нее произведенные

Частичная элек- Для общей электрификации России нетрификация Рос- обходим довольно большой срок, а потребшии для олижай- ноущего. ность в электричестве возникает все чаще и больше уже теперь в таких местах, где его прежде не оыло. Поэтому, не дожидаясь выполнения общего плана, приходится заботиться об удовлетворении главнейших из этих потребностей, то-есть производить частичную электрификацию с помощью тех средств, которые у нас имеются.

Так, например, прежде в городах, а также и на фабриках, заводах и имениях, расположенных поблизости друг от друга, часто бывало, что разные хозяева строили отдельные электрические станции,-и теперь во многих городах и районах есть по нескольку станций, в то время как можно обойтись только одной.

Следовательно, все остальные лишние станции из таких мест можно снять и перенести туда, где электричества нет и где оно особенно необходимо. Затем можно легко расширить многие из существующих больших электрических станций, а также есть возможность теперь строить мелкие тепловые, водяные и ветряные элек-

трические станции, для которых у нас еще хватит машин, приборов и материалов.

Потом, когда, приблизительно через десять лет, будет выполнена общая электрификация, такие станции или останутся и войдут в общую электрическую сеть, или же будут переделаны на трансформаторные подстанции.

План частичной электрификации также разработан Государственной Комиссией по Электрификации России, и работы по нему в некоторых местах уже производятся.

III. Эпентричество в сельсном хознйстве.

А. Значение электрификации для сельского хозяйства в России.

Сельское хозяй-

ство-главный ис
очник питания
Продовольствие или продукты питания населения. держания жизни человека, получаются, главным образом, от сельского хозяйства. От него же получается и значительная часть сырья, идущего для промышленности.

Для сельского хозяйства в России есть налицо много благоприятных условий,-в ней громадные пространства довольно плодородной земли, ровный умеренный климат и большое население, три четверти которого занимается хлебопашеством.

Слабое развитие сельского хозяй

Несмотря на это, сельское хозяйство в ства в России. России развито все же сравнительно слабо, щади оорабатыв можно судить прежде всего по плоодной засеваемой дых земель и по среднему урожаю с

Так, наприм десятины. сйсгая, например, до войны, существовавшая тогда Россииская Империя занимала пространство приблизительно в два миллиарда (или в две тысячи миллионов) десятин, т.-е. почти одна пятего около 135 миллионов десятин, т.-е. почти одна пятнадцатая доля всей земельной площади Государства.

Конечно, много земли находится под лесом, много земли неудобной для земледелия, но все же и из той земли, которая вполне для него пригодна, у нас возделывалась только небольшая часть.

Так получалось потому, что наши способы земледелия очень несовершенны, каждая десятина возделываемай земли требует много труда человека и имевшегося у нас населения не хватало, чтобы обработать земли
больше.

Наши урожаи тоже весьма низки,-до войны у нас средний урожай пшеницы с одной десятины земли равнялся 45 пудам, тогда как в соседней с нами Германии с одной десятины его собиралось в среднем около 140 пудов.

Равным образом средний урожай картофеля в России был около 500 пудов на десятину, тогда как в Германии он превышал 1000 пудов.

Значение перехо- Малая урожайность объясняется прежде да России с т тех-
польного хозяй-
всего ведением большею частью крестьянпольного хозяй-
ства нного
ского населения России трехпольного

польное. хозяйства, когда вся принадлежащая одному владельцу земля делится на три поля, из которых по очереди одно засевается озимою рожью или пшеницей, одно яровыми хлебами или картофелем и одно отдыхает под паром.

Трехпольный севооборот чрезвычайно истощает почву, потому что каждый третий год на одном и том же поле выращивается одно и то же растение, например, озимая рожь, и оно вытягивает из одного и того же слоя почвы одни и те же питательные вещества.

Совершенно иначе получается при многопольном хозяйстве, когда земля каждого хозяина делится на много участков и на ней выращиваются не два-три растения, а несколько,-например, чередуясь между собою, растут: на одном поле-озимая рожь или пшеница; на другом-картофель, свекла или другие корневые овощи; на третьем - ячмень или яровая пшеница с подсевом клевера; на пятом, шестом и седьмом - клевер, на восьмом - овес и только небольшую часть земли оставляют под паром, а то и совсем обходятся без него.

Одно растение берет из почвы больше одних питательных веществ, другое-других;-одно сидит корнями не глубоко и получает необходимые для него питательные вещества из верхних слоев земли, а другое вытягивает их из более глубоких. Наконец, некоторые растения своими корнями сами дают земле очень важные питательные вещества, которые они добывают из воздуха.

Таким образом, при мнотопольном севообороте на каждом участке земли за время севооборота каждый год сеется новое растение и, если в прошлом году была взрощена озимая рожь, которая брала питание из

верхнего слоя почвы, то на будущий год здесь садят картофель, берущий другие питательные вещества уже из более глубоких пластов земли, затем сеют клевер, корни которого прекрасно удобряют землю для дальнейших посевов, и так далее.

В общем очередь каждого растения приходит через восемь-девять лет, а то и больше и, когда участок опять-засевают рожью, то земля на нем уже успела накопить те питательные вещества, в которых рожь больше всего нуждается.

Благодаря многополью, повышаются урожаи и так как при нем пара совсем нет или же под паром гуляет только небольшой участок, то значит почти вся пахотная земля в хозяйстве используется полностью.

В неудачные годы многопольное хозяйство тоже терпит меньше убытка, чем хозяйство трехпольное, потому что при неурожаях одних растений родятся другие.

Однако, наше крестьянство, несмотря на преимуще ства многопольного хозяйства, держится старого трехполья и происходит это не только потому, что оно будто

Многие из крестьян многопольной системы. щичьих хозяйств видели, что давно на примере помещичьих хозяйств видели, что земля при многопольной за последние перед войной деся, а в земских губерниях об этом земские агрономы. десятилетия им рассказывали

> Дело в том, что при мя

тывать почти всю пахотную мополье приходится обрабапара или оставляя под ним темлю, совсем не оставляя кроме того, для поседа ми только небольшую часть, и, дить глубокую вспашку, а для всегений нужно произвовой силы и часто нет бо для всего этого не хватает жипростая соха. Зависимость уро-
жаев от своерреИ без того крестьянину приходится нажеев от своевре- прягать при обработке земли все усилия. меннйй тшатель- Наше лето, а особенно весна коротки,
ной обработки почвы. полия
много. же работ надо успеть сделать очень Небольшо
гими работами частоздание со вспашкой, посевом и другборот, правильная и вортит весь урожай, тогда как, на почвы может спасти посевы от засухи и дает большие сборы

Затем каждому земледельцу хорошо известно, что чем лучше он подготовит землю и чем тщательнее возделает свой посев, тем больше урожая он получит.

Ускорить же полевые работы, улучшить обработку земли и облегчить труд человека можно с помощью сель-ско-хозяйственной машины.

Хотя за последние перед войной годы эти машины и стали постепенно распространяться в России, но все же, по сравнению с другими передовыми странами, у нас применяется их очень мало, а вследствие этого обработка почвы и посевов ведется старинными несовершенными способами; часто ее не успевают произвести во-время или производят плохо и, конечно, такое положение сказывается на ухудшении урожаев.

Довоенное сель- Итак, рассмотрев некоторые причины
ское хозяйство россии нуждалось слабого развития сельского хозяйства в в конечном счете Россий еще в прежних нормальных услотияв механизации виях довоенного времени, мы видели, что обработни.
у нас остаются неиспользованными для земледелия громадные пространства годной земли только потому, что не хватает рабочей силы их возделать; мы видели также, что наша урожайность очень низка, главным образом, вследствие ведения крестьянством старинного трехпольного хозяйства, и вместе с тем оказалось, что переход к хозяйству многопольному задерживается опятьтаки недостатком рабочей силы и более совершенных машин и орудий для обработки.

Наконец, мы выяснили, что тот же недостаток рабочей силы и сельско-хозяйственных машин и орудий не позволяет нам во-время и хорошо обработать нашу землю и вызывает даже понижение урожайности.

Значит, еще до войны наше сельское хозяйство нуждалось для своего развития в применении машин и орудий и в замене недостающей силы людей и рабочих животных силой двигателя, т.-е., говоря иначе, оно нуждалось в механизации обработки.

[^5]слое, особенно мужское, население и, следовательно, убавилось количество рабочих рук.

В еще большей степени уменьшилось число рабочего скота. Так, по подсчетам Комиссариата Земледелия у нас теперь осталась приблизительно только третья часть того количества лошадей, которое было в 1914 году до начала войны.

За эти же годы сильно износился, так называемый, мертвый сельско-хозяйственный инвентарь, т.-е. различные сельско-хозяйственные орудия, телеги, упряжь и тому подобное.

Вследствие как указанных причин, так и некоторых других, засеваться земли теперь стало, примерно, только две трети того, что засевалось до войны, да и обработка ее стала производиться хуже, чем раньше, поэтому сильно сократились и ухудшились урожаи.

Таким образом, наше сельское хозяйство, которое и до войны было развито довольно слабо, теперь пришло настолько в упадок, что производимых им продуктов уже не хватает для прокорма населения, и страна последние годы переживает острый продовольственный кризис.

Недостаток продовольствия влияет на состояние всей экономической жизни и, чтобы поднять нашу промышленность, наладить транспорт и улучшить снабжение топливом, необходимо прежде всего позаботиться о преодолении продовольственного кризиса, а следовательно позаботиться о поднятии сельского хозяйства.

Надо также иметь в виду, что с улучшением сельского хозяйства мы не только сможем прокормить свое население, но и сумеем легко получить излишки продуктов для вывоза их за границу в обмен на такие товары, которых у нас не хватает.

Механизация нак
способ скорейше-
способ скорейше. Рассматривая состояние нашего сельскоговосстановления го хозяйства до войны, мы убедились, что менного сельского для его развития требовалась механизахозяйства. ция, т.-е широкое применение для всех сельско-хозяйственных работ-машин и двигателей.

В настоящих же условиях механизация сельского хозяйства еще более необходима. Во-первых, применение сельскосельское хозяй машин позволит скорее поднять и развить сельское хозяйство, несмотря на недостаток рабочих рук.

Ведь каждая средняя машина может заменить своей работой работу нескольких десятков человек, а требует для ухода за собой только одного-двух-трех рабочих.

Во-вторых, механические двигатели, которые будут приводить эти машины в движение, заменят нам недостающих лошадей и другой рабочий скот.

Содержание робочего скота является вообще статьей весьма невыгодной, так как для его прокормления приходится отводить большую часть посевной земли под овес и кормовые травы, вместо того, чтобы использовать ее под другие полезные для людей растения.

Кормить рабочий скот приходится и тогда, когда он стоит без дела, кроме того, за ним надо присматривать, ухаживать и строить для него особые обширные помещения.

Двигатель же, когда не работает, не требует ни ухода и никаких расходов.

Правда, рабочий скот дает навоз, представляющий собою важное удобрение для почвы, - однако, навозное удобрение можно заменить удобрением искусственным и, наконец, гораздо выгоднее для получения его держать в хозяйстве скот молочный и мясной.

Необходимость

Но какой же двигатель более всего подприменения элек- ходит для механизации сельского хозяйства? ществления меха- Если мы вспомним все, что говорилось низации сельского о различных двигателях, то решим, что дви-
хозяйтва. гателем наиболее подходящим для работы в условиях сельского хозяйства является двигатель электрический.

Сельское хозяйство ведется на больших пространствах Поле, сенокос, гумно, молочная ферма и усадьба хозяина часто находятся друг от друга на расстоянии нескольких верст. Во всех этих местах может появиться необходимость в двигателе для приведения в работу той или иной сельско-хозяйственной машины или орудия.

Но мы знаем, что в таких случаях удобнее всего применять электрические двигатели, потому что к ним не надо доставлять топлива, с ними всего проще обращаться и для ухода за ними не надо содержать отдельных людей.

Так как различные земледельческие работы происходят не в одно время, то один и тот же двигатель можно использовать для различных целей, и в этом от-

ношении также электрический мотор имеет преимуще ства перед другими двигателями, потому что он легок и его удобно передвигать с места на место

Для питания электромоторов током проводят над электрифицируемой местностью несколько подвешенных на столбах электрических линий, к которым можно в

В тех случаяа электрический двигатель.
получать случаях, когда электрическую Энергию можно электрических моторов электрической станции, работа нее, чем работа других двигателей. значительно выгод-

Итак; применнние электртеней.
стве или применение электричества в сельском хозяйства дает прежле ффикация сельского хозяйработы сельско-хозяйственных машин иешевую силу для

Использзввание әтой соныых машин и орудий,
сократит потрребность в салы ооллечит труд человека, ствовать развитииосте сельского уем скоте и будет спосоо-

Культурное зна-
чение электри
чение электри-
фикации сель-
для крестьянина.

Электричество также внесет в жизнь стьянских избахрудовать электрическое освещение в кре кой деревне легко н даревенских улицах; в каждой таведрами из далекой реки ио водопровод и не носить воду

Помимо материали или колодца и т. П
чество сократит ральных выгод для хозяйства, электри ему часто непосильной время крестьянина и облегчит даст крестьнину возможност, а это все вместе взятое становке больше возможность проводить в удобной об становке больше свободного времени за отдыхом, книгой, само по себе наиболее приятно занятием, которое ему

Зависимость при-
иенения электри. село, чтобы применить электричество для чества в еепрсном иметь сого хозяйства во всей России, надо хоздастве от об. иметь возможность получать электрическую щен элентрффи- энергию повсеместно, то-есть надо пои проводов или, говоря инутетью электрических станций щую электрификаиннче, произвести ту самую обрилось выше во II части этой книги, о которой гово-

Б. Различные применения электричества в сельском х03яйстве

I. Применение электричества в полевых работах.

Электрическая Пахота земли является одной из наипахота по двухма- более тяжелых и ответственных работ в применение элек-сельском хозяйстве.
тричества в дру- Для нее, особенно при глубокой вспаших полевых ра- ке, приходится затрачивать много рабочей силы и надо спешить с ее окончанием, чтобы не запоздать и не испортить будущего урожая.

Кроме того, весеннюю вспашку под яровые хлеба надо производить ранней весной, когда у крестьянина много другого дела по хозяйству, а для озимой вспашки самым благоприятным временем бывает период окончания полевых работ, когда все силы и без того напряжены до последней степени.

Поэтому уже давно был изобретен и получил большое распространение особенно за границей паровой плуг. Однако, этот плуг имеет много недостатков:

Он слишком тяжел и, следовательно, неудобен для перевозки по плохим дорогам и местам; к нему нужно подвозить топливо и воду, а также держать при нем опытных кочегаров, он плохо работает на покатой местности и, наконец, годится только для глубокой вспашки.

Появившийся позже электрический плуг легче парового плуга, не требует доставки воды и топлива, может управляться сравнительно малоопытными рабочими, хорошо работает на значительных уклонах и одинаково пригоден как для глубокой, так и для мелкой вспашки.

Электрических плугов в настоящее время существует несколько систем, из которых наиболее распространенной на практике является Германская двухмашинная система.

При этой системе (фиг. 29). с двух сторон поля, приблизительно на полверсты друг от друга располагаются две одинаковых электрических тележки-лебедки (фиг. 30 и 31). Тележки устанавливаются поперек к борозде, так что передвигаться они могут только в одинаковых направлениях по краям поля.

На каждой тележке находится сильный электрический двигатель и лебедка или барабан для наматывания стального каната.

Кроме того, на тележке имеются особые приспособления для пуска и остановки двигателя, а также для

соединения его либо с барабаном для наматывания каната, либо с колесами тележки, когда нужно ее передвинуть.

Канат, наматываемый на барабан, идет поперек те лежки и, значит, имеет направление вдоль борозды.

К концам канатов обоих тележек прикрепляют плуг с несколькими лемехами и его устанавливают у края поля возле одной из тележек.

Фиг. $\mathbf{3 0 .}$
Электрическая тележка-лебедка для электрической пахоты, построенная на"русских
заводах;-вид сбоку. Из под тележки идет сталной канат, к которому прикрепляется
перекиной плуг.

Электрический мотор каждой из них присоединяют гибким изолированным проводом (кабелем) к электрическим проводам, проведенным на столбах по полю.

На обоих тележках помещаются по одному рабочему для управления мотором. Начиная вспашку, рабочий, наховигатель дальней тележке, пускает в ход ее электродвигатель, который вращает барабан, барабан наматывает свою сторону, канат же с второй тележки разматывается садм собою.

B
В то время, когда
себе, рабочий на тележке блияя тележка тянет плуг к
с колесами тележки и пускает его тоже в ход. Тогда колеса начинают вращаться и тележка сама покатится вперед, но как только она передвинется на ширину вспаханной полосы ее останавливают.

Фиг. 32.
Перекидной восьми-лемешный плуу для электропахоты, построенный в России на
Брянском заводе.

Когда дальняя тележка подтянет плуг к себе, находящийся на ней рабочий останавливает мотор, а рабочий ближней тележки, соединив свой мотор с барабаном, пускает его. Теперь плуг пойдет уже в обратную стороӘлевтричество. А. Куливовский.

ну, а тем временем дальняя тележка передвинется вперед на ширину вспаханной полосы, и так продолжается до тех пор пока не будет распахано все поле

Чтобы не поворачивать каждый раз плуг, его делают двухсторонним,-таким образом, когда плуг идет в одном направлении, то работают лемехи, расположенвремя поднята половине плуга, другая же половина в это

Когда плуг
опускается идет в обратном направлении, то на земповернутыми вторая его половина, снабженная лемехами, половина приполнимается в другую сторону, а первая Такой плуг называя.
лансирным (биг з2) На ным (фиг. 32).
правильное направлениется рабочий, который дает ему глубину вспашки.

В настоящее
ваводах изготовляется на Петроградских и Брянском электрических восьмилия России двадцать комплектов уже закончены.

Такой плуг
и может пахать десятины в час. на глубину от 4 до 8 вершков около 1

Мощность
вленного на каждой тележкического двигателя, устанодиным силам.

равна 75 лошамашинной системе необхектрической паீоты по двух2 машиниста по одному на кажсой 4 рабочих, а именно и 1 подсобный рабочий на каждой лебедке, 1 плугарь Стоимост раочий.
причин, но в среднтрической пахоты зависит от многих ны) оказывалась в два при глубокой вспашке она (до войживотными и почти в поза выгоднее пахоты рабочими вле паровой.

Расход электрической энергии на одну распахиваемую десятину зависит от рода почвы и в среднем: 1) При глубине вспашки в 4 верш и в среднем:
2)
"6 " 50 киловатт-часов
65 киловатт-часов.
90 киловатт-часов.

В Германии, где сравнительно давно производится работа электрическими плугами, станции до войны отпускали электрическую энергию для пахоты по $6 \frac{1}{2}$ копеек (на наши деньги) за один киловатт-час. Таким образом, вспашка на среднюю глубину (6 вершков) одной десятины расходовала электричества, примерно, на 4 рубля 25 коп.

Лебедки-тележки - электрического плуга можно применять также для работы других сельско-хозяйственных орудий и машин.

Так, ими можно приводить в движение рондоли, бороны, жатвенные машины, сенокосилки и проч.
самодвижушиеся Кроме только-что описанной системы электрические электрических плугов, в которой самый

плуги. плуг приводится в движенье тягой двух электрических лебедок, существуют еще, так называемые, самодвижущиеся электрические плуги.

Эти небольшие - чаще всего трехлемешные - плуги передвигаются по полю силою маломощного (слабого) электрического мотора, установленного на самом плуге. Мотор вращает колеса плуга и заставляет его катиться по полю.

На фиг. 33 и 34 изображен такой самодвижущийся плуг шведской системы. На нем поставлена небольшая мачта, на которую проведен электрический изолированный провод со столба, стоящего на поле.

К этому столбу ток подводится обыкновенным способом по воздушным прово-

Фиг. 33.
Самодвижущийся электрический плуг шведской системы общества плуг штокгольм,-вид сзади.
Стоко дам от электрической станции и переходит от него по изолированному проводу на мачту, а затем и в находящийся на плуге электрический двигатель.

По мере того, как плуг приближается к столбу, изо-

лированный провод, перекинутый со столба на мачту укорачивается, наматываясь на барабан, поставленный на плуге. Этот плуг имеет мотор в 20 лошадиных сил и может пахать около $1 / 2$ десятины в час.

Фиr. 34
Электрический_плуг шведской системы-боковой вид
На самодвижущемся плуге американской системы (фиг. 35 и 36), ток подается к электрическому двигателю, находящемуся на плуге, по изолированному кабелю, лежащему прямо по земле

Один конец кабеля присоединяется к протянутому ской станции столбах воздушному проводу от электрической станции, а другой к двигателю. На плуге устроен барабан, на котором намотан кабель.

Когда плуг идет в сторону противоположную от воз душного провода, тогда кабель разматывается с барабана ложится рядом с бороздой

Достигнув конца поля, пахарь повертывает плуг обратно и делает вторую борозду, причем кабель наматывается на барабан (фиг. 37).

На таком американском
ский двигатель элияе ставится электричев 3 лошадиных силы.

Этот двигатель мож ловеком и можеть быть применен с плуга одним чехозяйстве можеть оыть применен для других работ в

Электрический самодвижущийся плуг очень легок, и его свободно можно возить даже по плохим дорогам.

Стоит он тоже весьма дешево, и, например, в Америке, цена плуга, а также материалов для устройства оздушной линии оказывается всего только в два раза зыше стоимости лошади с упряжью.

Фиг. 35.
Передний вид.

Фиг. 36.
Задний вид.
Самодвижущийся плуг американской системы инженеров Деидсон и Бойда. Сверху расположен барабан с изолированным кабелем, подводящим ток к электрическому двигателю, помещенному между колесами.

Электрические самодвижущиеся плуги могут найти у нас широкое применение в отдельных небольших хозяйствах.

У нас в России теперь производится подготовкай к постройке самодвижущихся электрических плугов.

Фиг. 37.
Американский самодвижущийся плуг в действии. За плугом хоиит работник, управляющий плугом.

Электрические

Не особенно давно придуман новый спофрезера. соб подготовлять землю для посева, при назыщи не плугов, а особых приспособлений, которые ываются фрезерами.
Фрезер представляет собою барабан, снабженный металлическими зубьями (фиг. 38). Если такой барабан опустить на землю и начать быстро вращать, то его зубья будут разрывать почву.

За границей теперь строятся для обработки полей электрические фрезера (фиг. 39). Они состоят из

тележки, на которой установлены два электрических мотора. Один мотор соединен с колесами тележки и служит для передвиженья ее по полю, а другой соединен с фрезерным барабаном и приводит его в быстрое вращенье.

Барабан можно ставить ближе или дальше от земли и разрыхлять почву на различную глубину.

Ток к электрическому фррезеру подводится так-же, как и к американскому самодвижущемуся плугу, по кабелю, лежащему на земле.

Два таких фрезера изготовляются в настоящее время в России.

Фиг. 39
Самодвижущаяся фрезерная тележка для обработки земли.
2. Применение электричества для обработии собранного урожая.

Снятый с корня урожай, как известно, Дальнейшая об- бывает необходимо подвергать дальнейшей с корня урожая. обработке, чтобы получить тот чистый продукт, который идет в употребление.

Так, зерновые хлеба для получения от них чистого зерна приходится обмолачивать, провеивать и сортировать, а самое зерно в дальнейшем для употребления его в пищу нужно или молоть или обдирать. Здесь мы рассмотрим, как электричество может помочь при такой обработке снятого урожая.
электричесная Молотьба может производиться или в млототьба. поле, если не хотят тратить силу и время на перевозку снопов в одно место, или же-на гумне. В последнем случае молотилку соединяют обыкновенно при помощи ремня с электрическим мотором (фиг. 40). В небольших хозяйствах, где молотилка невелика, мои на но взять переносный маленький мотор, укрепленный на салазках (фиг. 41) или на двухколесной тележке (фиг. 42).

При таком моторе имеется также приспособление для его пуска и остановки и кусок изолированного провода длиною в несколько десятков саженей для присоединения

Электродвигателя к ближайшей электрической линии. Лереносный электродвигатель можно применять к различным машинам, - его устанавливают с салазками на с той машивязывают веревкой к воитому сзади колу, а с той машиной, которую он должен вращать, соединяют

посредством ремня. При обмолачивании больших количеств хлеба прямо на поле (фиг. 43)-берут большую молотилку, поставленную на колеса и снабженную часто также прессом для соломы.

Фиг. 41.
Передвижной электрический двигатель на салазках.

Электрический мотор для вращения этой молотилки ставят на отдельную тележку. Например, в Германии повозку для передвижного мотора делают в виде небольшого вагончика, имеющего три отделения. В среднем отделении (фиг. 44) устанавливают самый мотор, от ко-

торого наружу сквозь боковую стенку повозки проходит шкив (колесо) для ремня. В переднем отделении (фиг.

Фиг. 42.
Передвижной электрический мотор на двухколесной тележке.
45) помещается изолированный гибкий провод (кабель) для присоединения мотора к ближайшей электрической

линии. В задней части вагончика (фиг. 46) находится приспособление для пуска в ход мотора и его остановки; заднее отделение остается закрытым, а наружу выступа-

ет только ручка для управления мотором. В описанную молотилку и в повозку с мотором впрягают лошадей и перевозят машину и двигатель в то место поля, где стоят скирды хлеба. Здесь молотилку и электродвигатель соединяют между собою ремнем и, чтобы они стояли неподвижно, кладут под колеса упоры.

Затем, открывают переднее отделение вагончика, достают оттуда кабель и присоединяют его к ближайшему электрическому проводу, после чего молотилка готова к работе.

Фиг. 44.
Повозка с электрическим двигателем для сельскохозяйственных работ. Среднее отделение, в котором установлен самый электрический двигатель.

Когда надо начать молотьбу, повертывают выступающую из заднего отделения вагончика ручку, тогда мотор начинает работать и вращать с собой молотилку.

Электрический мотор, установленный в повозке, также как и мотор переносный, можно, конечно, употреблять для вращения самых различных машин.

Насколько электрический двигатель ускоряет и облегчает работу, можно судить по следующим цифрам:

1 рабочий обмолачивает ручным цепом за один час приблизительно 1 пуд зерна.

1 лошадь на конной молотилке обмолачивает за один час около 5 пудов зерна.

1 электрическая молотилка в 25 лошадиных сил обмолачивает за один час-100 пуд. зерна.

1 универсальная электрическая молотилка в 90 лошадиных сил, в которой имеются специальные приспособления для подачи снопов в молотилку и пресс для соломы, обмолачивает за один час-300 пуд. зерна.

Еще до появления электрических молотилок были введены в практику молотилки паровые, которые применяются и до настоящего времени.

В паровой молотилке самую молотильную машину вертит не электрический двигатель, а так называемый локомобиль, т.-е. поставленный на колеса паровой двигатель, рядом с которым установлен на той же тележке и паровой котел для приготовления пара.

Однако, электрическая молотьба так же, как и электрическая пахота, имеет много преимуществ перед паровой.

©xr. 46.
Повозка с электрическим двигателем. Заднее отделение, в котором расположены приборы для управления двигателем.

Прежде всего подвижной электрический двигатель, одинаковый по силе с паровым локомобилем, почти втрое легче его, почему он более удобен для передвижения по плохим дорогам и мостам, а также требует для своей перевозки только $1-2$ лошади, тогда как локомобиль нуждается в $4-6$ лошадях.

К электрическому двигателю не надо подвозить воды и топлива, которые необходимы для локомобиля, и он всегда готов к действию, в паровом же локомобиле приходится терять время на разводку паров.

Вследствие простоты электрического двигателя, управлять им может работник, стоящий при молотилке, а для локомобиля необходимо иметь обученного кочегара; причем, при продолжительной работе-таких кочегаров должно быть для подсмены несколько.

Затем очень важное преимущество электромотора заключается в его пожарной безопасности-он может находиться вблизи самой молотилки и внутри того же помещения, где она установлена, тогда как локомобиль, который при топке дает много искр, очень опасен в пожарном отношении и не может ставиться ближе пяти саженей от огнеопасных помещений.

Наконец, электромотор стоит в несколько раз дешевле локомобиля и работа молотилки при электрическом двигателе обходится дешевле, чем при паровом (локомобиле)

На обмолачивание одного пуда ржи (зерна) при одно временном применении соломенного пресса расходуется электрической энергии две десятых $(0,2)$ киловатт-часа. Считая по довоенной цене стоимость одного киловатт часа (для двигателя) в 10 копеек, получим, что на вымолотку одного пуда ржи тратилось электрического тока на 2 копейки. Другие зерновые хлеба (пшеница, овес, ячмень) обмолачиваются легче и поэтому для них электри чества расходуется меньше.

Электрические моторы для молотилок берут не меньше чем мощностью в 3 лошадиных силы. При выборе величины мотора надо обращать внимание на систему и размеры молотилки и руководствоваться следующей таблицей:

Какая молотилка.	Какой попе- речник барабана молотилки.	Какой мощности, (силы) надо взять электродвиг. для молотилки.
Молотилка штифтовая.	$61 / 2-11$ вершк.	3 лош. силы.

Для небольшой молотилки, употребляемой в среднем крестьянском хозяйстве, совершенно достаточен электродвигатель в 3 лошадиных силы.

Применение эле
птричеества эле- Для приведения в работу веялоки сор
 ных машин. удобно и выгодно употреблять электрический двигатель (фиг. 48 и 49). Его или укрепляют на самом корпусе машины, или же берут отдельный перенос-

ный электродвигатель и соединяют только на время работы с веялкой или триером.

Фиг. 47.
Электрическая молотьба ночьюпри свете электрической лампы.
Для обыкновенных употребляемых в крестьянском хозяйстве веялок и сортировок можно применять совсем маленький электрический мотор в одну треть лошадиной силы.

Такой мотор настолько легок, что его можно свободно переносить в одной руке (фиг. 50).

При указанном электрическом моторе веялка может отвеять около 100 пудов зерна в час, а триер отсортировать зерна за один час $30-35$ пудов.

Для того, чтобы провеять, а после отсорти-

Фur. 48.
Веялка, работающая от установленного на ней электрического двигателя.

$$
-80-
$$

ровать 100 пудов зерна нужно затратить всего 1 кило-ватт-час электрической энергии, то-есть израсходовать электрического тока по довоенным ценам приблизительно на 10 копеек.

Фиг. 49.
Триер с электрическим приводом.

Электрические Чтобы полумельницы. чить из собранного зерна муку, крестьянин у нас в России, обыкновенно, бывает вынужден везти его на ближайшую водяную или ветряную мельницу.

Часто мельница расположена далеко .от деревни и, чтобы перемолоть зерно, приходится тратить много времени на езду и ожидание, утомлять работника и лошадь, а также терять некоторое количество зерна и муки на усыпку при перевозке.

Гораздо удобнее было бы иметь в каждом хозяйстве, или хотя бы в каждой деревне, свою небольшую мельницу. Однако, этому мешало

отсутствие силы для вращения мельничного постава, потому что не во всякой деревне можно воспользоваться силой воды и ветра, а конные мельницы работают невыгодно.

При общей электрификации сельского хозяйства явится возможность применить для работы мельниц электрические двигатели (фиг. 51).

Для средней вальцовой мельницы достаточен мотор мощностью в 5 лошадиных сил. Такая вальцовка может дать в час около 25 пудов мелкого или 40 пудов крупного помола.

Расход электрической энергии зависит от сорта зерна и крупности помола, но в среднем на 100 пудов мелкого помола затрачивается около 20 киловаттчасов, или по довоенным ценам на 2 рубля электрической энергии.

Переносный электрический двигатель на
носилках.
Элевтричество. А. Кудивовсвй․

Электрическая Что бы заготовить на зиму тровяной корм ных нормов. для скота, обыкновенно скошенную траву высушивают на солнце и получают таким образом сено которое сохраняют в особых помещениях

Однако такой способ сушки при всей своей простоте очень неудобен в том отношении, что он находится в полной зависимости от погоды. При сырой погоде сено часто загнивает и гибнет, откладывать же покос до на ступления сухой погоды бывает вредно, так как трава перерастает и теряет часть своих питательных свойств.

Да и вообще при сравнительно медленной сушке травы на солнце приблизительно третья часть питательных веществ, заключающисхя в этой траве, пропадает, блаодаря так-называемому, дыханию свеже-скошенных и еще-не высохших растений и от некоторых других причин.

Что-бы производить уборку трав при всякой погоде уже давно применяли различные иные способы заготовки кормов. Однако, все эти способы обладают какими-либо крупными недостатками. В некоторых из них получаются слишком сухие или кислые корма, которые плохо отражаются на здоровье животных, в других, заготовляемая в прок трава теряет очень много своих питательных вееств и т. д.

Наконец, очень недавно в Германии удалось применить совершенно новый способ заготовки кормов при помощи электрического тока.

При этом способе трава может коситься при всякой погоде. Тотчас-же после покоса она свозится в то место, стоит из одного электрическое устройство, которое состоит из одного или нескольких закрытых помещений, напоминающих большие высокие ящики. Стенки этих поесть особой камер изготовляются из бетона (тои цемента, которая, затвлрлевой из смеси песка, щебня камень) и покрываю, затвердевая, становится похожей на камень) ие пропрываются внутри особым изолирующим лаком, не пропускающим чрез себя электрического тока, а дне камер помещаются толстые железные листы. электрической сеноразкодвозится к камерам, и сперва в среднем около сочезкой разрезается на куски длиною камеры и плотно уминается, после чего камеры закры-

ваются металлическими крышками. К нижним железным листам и к верхним металлическим крышкам присоединяются провода, по которым подводится электрический ток. Ток начинает проходить чрез траву и убивает в ней бактерии, то-есть мельчайшие живые существа, не видимые простым глазом, но, которые, находясь в траве, и вызывают ее гниение.

Пропускание тока, например, для клевера продолжается около десяти часов, затем оно прекращается, а корм остается лежать в камерах и может сохраняться в них, не портясь, несколько месяцев и даже лет. При этом корм получается совершенно свежий и сочный, хорошо усвоиваемый желудками животных, и все питательные вещества, которые находились в траве, в нем остаются.

Этих питательных веществ оказывается настолько больше, чем в сене, что травы, собранной с 1 десятины и заготовленной в прок электрическим способом, хватает для прокорма одной коровы, приблизительно, на 120 дней более, чем хватает обыкновенного сена, полученного из той же травы с 1 десятины

Таким образом, при одном и том же участке луговой земли или засеваемого травой поля хозяин, применяя электрический способ заготовки зеленых кормов, будет иметь возможность держать больше скота.

Очень важно, что при этом способе покос трав не зависит совершенно от погоды и может производиться пред цветением растений, именно тогда, когда в них содержится наибольшее количество питательных веществ Ранний же покос раньше освободит землю для дальней шей обработки.

Консервировать или сохранять в прок электрическим способом, можно не только травы, но также и различные другие сочные корма, как например, картофель, репу, морковь, листья репы, ботву и другие, причем их перед загрузкой в камеры необходимо размельчать на специальной дробилке.

Сохраненне электризованных зеленых кормов является совершенно безопасным в пожарном отношении, так как корма сохраняются в сочном состоянии; а самые помещения, в которых они сложены, будучи сделаны из бе-

тона,-огнеупорны. Между тем, обыкновенное сухое сено очень легко воспламеняется и большое количество деревенских пожаров происходит от неосторожно зароненной на сеновал искры.

На приготовление электрическим способом одного пуда корма расходуется около четырех десятых киловаттчаса электрической энергии, то-есть приблизительно на 4 копейки, если считать стоимость одного киловатт-часа в десять копеек.

Самое пропускание тока чрез камеры с травой можно производить по ночам, когда нагрузка электрических станций мала, что является весьма выгодным для станций и поэтому они могут электрическую энергию для этой цели отпускать по значительно более дешевой цене.

Обслуживание установки для электрического приготовления зеленых кормов после наполнения камер сводится только к включению тока, которое может быть выполнено любым рабочим. Затем во все время пропускания тока никакого ухода за камерами не требуется, при чем, когда корм уже готов, то электрический ток выключается (прекращается) сам собой особыми самодействующими или, как говорят, автоматическими выключателями.

Камеры или помещения для электрического приготовления кормов строятся различной величины от $1 / 2$ до 15 кубических саженей каждая, - в зависимости от количества травы, собираемой в хозяйстве.

В Германии считают, что на голову крупного скота требуется камера в половину !кубической сажени, и, например, в хозяйстве, имеющем 50 голов, устраивают три камеры по 9 кубических саженей каждая.

Камеры изготовляют, обыкновенно, шестиугольной формы и, если и́х несколько, то строят рядом одна с другой и покрывают общим навесом.

Чтобы легче было загружать в них траву,-с одной стороны камерной постройки устраивают насыпной въезд, по которому подводы могут подвозить скошенную траву прямо к верхнему краю камер.

Здесь на помосте ставится электрическая сенорезка. Нарезанная ею трава сбрасывается в камеры и уминается в них.
3. Применение электричества для вспомогательных работ по хозяйству. повседневные Кроме возделывания полей, уборки уровспомогательные жая и его обработки, много еще силы и
 хозяйстве на вспомогательные повседневные работы, например, на приготовление корма для скота, на доставку воды для хозяйства, на пилку и колку дров и на многое другое.

В этих работах электрический двигатель также может принести большую пользу.
Электрические На корм скоту, кроме овса, ячменя и машины для при- сена, употребляют также в измельченном готовления корма вид скота. виде солому, корневые овощи (например,
дпп кормовую свеклу) и масляные жмыхи.

Для размельчения указанных продуктов существуют особые машины: соломорезки, корнерезки ижмыходробилки. Приведение их в действие производилось, обыкновенно, ручным способом и требовало для работы двух человек на каждом аппарате: один вращал ручку, а второй подносил и засыпал продукт и наблюдал за его обработкой.

При наличии электрической энергии для вращения машины применяется электрический двигатель, и вследствие этого необходимость во втором работнике отпадает, так как работник, занятый у аппарата, может сам пустить или остановить мотор, притом работа производится гораздо скорее и лучше.

Для средней соломорезки (фиг. 53) достаточен мотор в 3 лошадиных силы. Он может приготовить в час около 40 пудов мелкой сечки,-а так как рабочей лошади дают в день около 10 фунтов соломенной сечки, то значит, за два с половиной часа работы электрическая соломорезка может заготовить корма для одной лошади на год. На приготовление 100 пудов сечки (т. е. корма для 1 лошади на год) расходуется электрической энергии около 6 киловатт-часов общей стоимостью приблизительно на 60 копеек.

Корнерезки (фиг. 54) (машины для резки свеклы, репы и пр.) средней величины требуют мотора в $1 / 2$ лошадиной силы и в один час могут измельчатьоколо 75 пудов овощей, расходуя на приготовление 100 пудов корма ${ }^{1} / 2$ киловатт-часа электрической энергии-стоимостью в 50 коп.

Жмыходробилки (фиг. 55) обычного типа требуют электрического двигателя в 2 лошадиных силы и могут в 1 час раздробить около 90 пудов жмыховых лепешек. Для измельчения 100 пудов жмыхов расходуется электрической энергии около $1 \frac{1}{4}$ киловатт-часа, то есть при близительно на 12 копеек.

На одну голову крупного рогатого скота, обыкновенно, в день выдается около 3 фунтов жмыхов, поэтому на

приготовление этого корма для одной коровы на целый од в электрической дробилке тратится электричества приблизительно всего на 3 копейки *).

В корм скоту прибавляют также крупно размолотую муку. Для ее приготовления пользуются тою-же мельницей, которая имеется в хозяйстве для помола муки хлебной, только переставляют вальцы или жернова на грубый размол. О применении электричества яля работы мельниц мы уже говорили. Обыкновенно на одну голову крупного скота расходуется в день 3 фунта измельченного зерна, таким образом, помоя на электрической мельнице муки для одной лошади или коровы на год возьмет электрической энергии на 50 коп.

электрическая
подача воды.
B
В хозяйстве для питья людям, для домашзначительное количество воды.

Приблизительное среднее ежедневное потребление воды можно считать следующим:

1) Для дома на одного человека- 2 ведра.
2) Для лошади или головы крупного скота- 5 ведер.
3) Для теленка, свиньи, овцы-1 ведро.

Таким образом, для среднего крестьянского хозяйства, в котором с работником 7 душ людей и в котором имеется 2 лошади, 5 голов крупного скота и 7 мелкого, нужно ежедневно около 60 ведер воды.

Ясно, что ручная доставка такого количества воды даже из дворового колодца требует значительного времени Она делается еще более затруднительной, когда воду приходится носить издалека.

Поэтому в тех случаях, когда имеется возможность

[^6]воспользоваться электрическим током, для получения воды применяют электрический двигатель, соединенный с насосом (фиг. 56).

Если во дворе есть колодец, то в него опускают засасываюшую трубу от насоса и всякий раз, когда хотят достать воду, пускают электрический двигатель, тогда вместес ним начинает работать насос, а вода поднимается наверх и льется из крана.
Можно также устраивать общую подачу воды для всей деревни из ближайшей реки. В этих случаях насос, работающий от электрического двигателя, подает воду из реки в особый бак, поставленный на возвышении. От бака можно воду провести по зарытым в землю трубам к кранам, расположенным в разных концах деревни, и даже поста вить по крану в каждом дворе.

Чтобы не держать человека для постоянного наблюдения за наполнением бака, в баке устраивают особый поплавок, который сампускает электромотор, когда вода израсходовалась и поверхность ее опустилась, и наоборот, он выклю

чает (останавливает) двигатель, когда бак наполняется водой.

Электрический насос легко в любой момент пустить в действие и это особенно важно, например, в случае возникновения пожара.

Мощность мотора для насоса и расход тока зависят от высоты, на которую надо поднимать воду, а также от количества воды, доставляемой насосом в одну минуту

Небольшой насос, пригодный в среднем крестьянском хозяйстве и подающий около 2 ведер в минуту на высоту около 5 саженей, требует электрического двигателя в $1 / 2$ лошадиных силы; для насоса же, дающего 10 ведер в 1 минуту, нужен мотор в 2 лошадиных силы.

Для подачи -1000 ведер из колодца глубиною около 5 саженей расходуется электрической энергии около 2^{1} киловатт-часов, то есть приблизительно на 25 копеек.

Для поливки растений и для тушения пожаров употребляют насос, установленный вместе с электрическим

Фиг. 57.
Полвижной электрический насос для поливки огородов, садов Подвижной ил для тушения пожаров.

двииателем на тележке (фиг. 57). K такому подвижному на́сосу присоединяются две гибких брезентовых трубы (рукава). Один рукав опускается в реку, озеро или в наполненную водою бочку, которую возят за мотором,

другой рукав проводится в те места, куда надо доставлять воду. Электрический двигатель подвижного насоса присоединяется гибким кабелем к ближайшему проводу.

Электрический насос применяется также для накачивания в бочки жидких нечистот, которые приходится вывозить из сточных ям (фиг. 58).

элентрические
машины для пилни
Заготовка топлива чрезвычайно сокращаи колки дров. ется применением электрических пил и дровоколок.

Для пилки дров употребляется круглая пила, которую посредством ремня вращает электрический двигатель (фиг. 59), а также поперечная пилка с электрическим мотором (ф̆иг. 60).

Для небольших пил достаточен электрический двигатель в 5 лошадиных сил.

Колка дров тоже очень дегко и быстро производится в особых машинах, в которых ходят вверх и вниз стальные клинья. Когда клинья

Фиг. 59.
Круглая пила, работающая от электрического двигателя.

лывают подставляемые под них поленья.

Фar. 60.
Электрическая поперечная пила.

Электрические

облегчить еще больше работу чедля подъема тя. ловека, электрический двигатель применяют жестөй. также для передвиженияразличных тяжестей. Так, например, устраивают приспособления, с помощью которых электрический мотор поднимает на

сеновал с возов сено (фиг. 61), разгружает с возов мешки зерна и муки в амбары, или обратно - грузит из амбаров на телегу.

Фur. 61.
Электрический подъем сена на сеновал.

электрические Кроме опи приборы вто- санных выше, значения. существуют дру гие электрические маши ны, которые выполняют различные второстепенные работы по хозяйству, например, производят. чистку скота (фиг. 62), стрижку овец (фиг. 63) и т. д. Они являются менее важными, но в хорошо поставленном хозяйстве доставляют известное удобство.
4. Электричество в молочном хозяйстве и птицеводстве

Электрические се- B местностях, расположенных вблизи лобойки. больших городов, бывает выгодно держать

Фar. 62.
Электрическая чистка скота. Электрический пыесос втягивает в себя пыль и шерсть с животных, огда как при ручной чюстке грязь остается в помещении.

Много Молочного скота и вести молочное хозяйство для поставки в город различных молочных продуктов.

Фиг. 63
Стрижка овец при помощи электричества.
В молочном хозяйстве применяются, главным образом, сепараторы, то-есть аппараты для отделения сливок от молока, а также машины для сбивания масла (маслобойки).

Сепараторы и маслобойки устраиваются, обыкновенно, ручными, но там, где есть ток, очень удобно и полезно приспособить для них электрические двигатели.

Благодаря этому, во-первых, сберегается рабочая сила, а вовторых, достигается лучшая обработка.

Для небольших сепараторов (фиг. 64) и маслобоек (фиг. 65) вполне достаточны электромоторы в $1 /$ лошадиной силы. Расходуют они электрической энергии совсем мало. Так, сепаратор для отделения в нем 100 вед. молока требует $11 /$ кило-ватт-часов электрической энергии, т.-е. приблизительно за-

Фиг. 64
Сепаратор с электрическим мотором.

траты в 12 копеек, а маслобойка для сбивания масла из 100 ведер сливок расходует 12 киловатт-часов электричества (на 1 рубль 20 коп.).

Фur. 65.
Электрический мотор, приводящий в действие сепаратор и маслобойку
Электрические двигатели в $1 /$ лошад. силы малы и их легко прикрепить к подставке сепаратора или маслобойки.

Фur. 66.

электрические В недав-

 доильные при- нее время боры. нее время за границей появилисьи нашли большое раси нашли большое рас-
пространение электрические доильные приборы. Как известно, доение коров работа довольно утомительная и небрежное ее выполнение уменьшает удой.

В больших молоч. ных хозяйствах бывает трудно найти необхоа. димое число добросоЭлектрический прибор для прессования масл д. Кроме того, при ручном доении нельзя быть всегда уверенным в соблюдении полной опрятности.

Доильный аппарат (фиг. 67) состоит из поддойника, к которому приспособлен маленький электрический мотор-

Фиг. 67.
Электрические доильные приборы.
чик (в ${ }^{1}$ лошадиной силы). От поддойника идут четыре резиновых трубки с наконечниками, приставляемыми к вымени коровы. Моторчик доильного прибора присоединяется к электрическим проводам и, когда начинает работать, то высасывает воздух из приставленных к вымени трубок. Высасываемое, таким образом, молоко стекает по трубкам в поддойник.

Весь прибор весит около 11 фунтов и его легко переносить в руках. При электрическом доении один рабочий может наблюдать сразу за тремя доильными приборами (фиг. 68).

цыплят. Электрический прибор для выводки*) или электрическая наседка (фиг. 70) представляет собою ящик с расположенным внизу его нагревательным электрическим прибором. В ящик кладут яйца, закрывают их стеклом и пускают в нагревательный прибор электрический ток, тогда яэщик и находящиеся в нем яйца нагреваются до теплого состояния, после чего температура уже более не повышается, а поддер-

Фur. 69.
Общий вид электрифицированной молочной живается самим прибором одинаковой.

Фиг. 70.
Электрический прибор для искусственной выводки цыплят (инкубатор) *) Электрические приборы для выводки цыплят называются также элекическими инкубаторами.
Элевтричество. А. Куликовский.

Время от времени яйца просматриваются и перекладываются, но остаются в приборе в течение $20-25$ дней, пока не начнется вылупливание цыплят.

Электрическая наседка дает возможность выводить цыплят в больших количествах во всякое время года и потребляет очень мало электрической энергии. Прибор для выводки 100 цыплят берет в час энергии одну двадцатую киловатт-часа, так что расход на электричество за все время высиживания обходился около 2 копеек на яйцо.
5. Применение электричества в мелиорации.

Мелиорация и ев Мелиорацией называется искусствензначение. ное улучшение земли, т.-е. превращение земли, непригодной для оброботки, в годную для земледелия.

Поэтому под мелиорацией понимается осушение болот, искусственное орошение почвы в засушливых местностях, расчистка земли от кустарников, выкорчевка пней и различные другие земельные улучшения.

По рассчетам инженеров в России осушение даст для земледелия более 30 миллионов десятин земли, пропадающей сейчас под болотами, а искусственное орошение позволяет использовать до 8 миллионов десятин в таких местностях, где вследствие сильной засухи нельзя производить никаких посевов.

Но также и для тех земель, на которых уже долгие годы ведется хлебопашество, мелиорация может принести большую пользу.

В России во многих губерниях довольно часто бывают неурожаи, когда вследствие засухи, а иногда проливных дождей посевы гибнут и целые области поражаются голодом.

Засуха особенно опасна для тех местностей, где мало подпочвенной воды, каковыми являются восточные области России, Юг и все Поволжье.

Наоборот, ливни губят скорее всего урожаи в местностях, имеющих много подпочвенных вод.

У нас земледелие особенно зависит от дождей, потому что наш крестьянин не принимает никаких мер борьбы с тем вредом, который приносят засухи или большие ливни.

Между тем, таких способов существует несколько и самыми верными являются: устройство искусственного орошения для засушливых областей и искусственное осушение или отвод лишней воды в областях с болотистой почвой.

Если устроено искусственное орошение, то для посевов не страшна никакая засуха. Для примера можно указать на Туркестан, где по целым месяцам не бывает дождей и где без искусственного орошения земледелие было бы совершенно невозможно, хотя земля сама по себе там чрезвычайно плодородна.

Однако, туркестанское крестьянство много сотен лет работало над устройством орошения и, благодаря ему, оно может совершенно без дождей получать со своих полей превосходные урожаи.

При искусственном орошении от реки илиот озера проводятся в сторону большие каналы, от них ответвляются средние канавы, от которых уже расходятся по полям совсем маленькие канавки. Вода из реки идет по каналам и канавкам или самотеком, или же подается насосами и другими приспособлениями.

При искусственном осушении в болотистых местностях избыток воды отводится по каналам в более низкие места и спускается в ближайшие озера или реки.

Элентрифинация
уелиоративных Устройство искусственного орошения и осушения требует производства больших зеработ по рытью каналов, расчистке и углуолению русл рек. В старину, например, в Туркестане и Индии на такие работы сгонялись по принуждению тысяяи людей и сооружение какого-нибудь одного канала иногда продолжалось по несколько десятков лет.

Теперь для земляных работ существует много различных машин и их легко можно применять в тех случаях, когда имеется электрическая энергия для приведения этих машин в движение.

Так, например, существует особый прибор, называемый плуг-крот, который предназначается для быстрого проведения канав. Он прикрепляется вместо перекидного плуга к канату уже описанных электрических лебедочных тележек и при своем движении, роет землю, оставляя за собою глубокую канаву.

Кроме того, насосы, которые часто употребляются при искусственном орошении и осушении, оказываются наиболее удобными и выгодными, если они работают от электрических двигателей (фиг. 71).

На фиг. 72 по-

Фиг. 71
Работающий от эжектрического двигателя Работающий от эдектрического двигателя
насос подает по трубам воду в поле ддя орошенвя. казана широко практикуемая заграницей поливка полей и огородов от электрического насоса по спо собу, так называе-мого,-д о жде в ан и я. При этом спо собе вода из ближай шей реки, озера или другого водоема подается электрическим насосом на поле или огород, на которых проложены тонкие металлические трубы, имеющие в своих стенках небольшие отверстия.

Находящаяся под напором вода бьет из этих отверстий высокими фонтанами и поливает землю.

Электрификация

©ar. 72. водой, пой и огородов по способу до жде в а н
6. Электрические железные дороги в сельском хозяйстве
(Электрический сельско-хозяйственный транспорт).
Сельско-хозяй ственные перевозки.
выые п. России, как мы уже говорили, даст возможность получать электрический ток повсеместно и поэтому с ее выполнением сильно облегчится производство различных мелиоратив-

Всякий, кто бывал на больших заводах, возки. мещаются мастерские и Ісклады, бывают

соединены между собою узкоколейными железно-дорожными путями. По этим путям паровозы или электрические двигатели подвозят в мастерские материалы из складов, доставляют топливо, а также перевозят на склады из мастерских уже приготовленные товары. Если завод стоит в стороне от железнодорожной линии, то его соединяют с ближайшей железнодорожной станцией подъездным путем для доставки на завод сырья и топлива и для отправки на железную дорогу выработанных заводом предметов. Заводские железнодорожные пути, конечно, в очень большой степени ускоряют и облегчают производство, так как совершенно понятно, что ручная переноска тяжестей из одного заводского здания в другое и даже перевозка их на лошадях взяла бы очень много времени и труда.

Сельское хозяйство собственно является тоже заводом или фабрикой, которая вырабатывает хлеб, сено, лен, шерсть, молоко, масло и другие продукты.

Только мастерскими, в которых производятся различные работы, здесь оказываются: поле, сенокос, гумно, мельница, молочная ферма, усадьба, и расположены эти мастерские гораздо дальше одна от другой, чем на заводе.

Здесь тоже приходится производить между различными частями хозяйства перевозку грузов. Так, со двора на поле везут удобрение, с полей в конце лета перевозят на гумно снопы, с гумна обмолоченный хлеб доставляют на мельницу, с мельницы муку перевозят в амбары и потом отправляют ее для продажи в город или на железную дорогу.

Все перевозки совершаются на лошадях по плохим проселочным дорогам, и если подсчитать, то окажется, что сельский хозяин тратит на них очень много труда и несет большие расходы на содержание лошадей, починку телег, саней и проч.

Поэтому для повышения выгодности сельского хозяйства и для его развития недостаточно ограничиваться применением машин и двигателей только для полевых работ и для обработки собранного урожая,-надо также ввести улучшение и в способе перевозки сельско-хозяйственных продуктов, или, как говорят, в сельско-хо 3яйственном транспорте.

Разумеется, перевозка облегчится и в том случае, если наши проселочные дороги будут переделаны в хорошие шоссейные дороги, но самые лучшие результаты может дать механизация транспорта, то есть замена при перевозках в сельском хозяйстве силы лошадей силою двигателя.

Применение элек-
тричества для
тричества Раньше, когда говорилось об электриственного тран. фикации железных дорог, мы видели, что спорта. из всех родов двигателей для транспорта саческий, для мым выгодным является двигатель электрикации России корого вдобавок при общей электрифиэнергия.

При электрическом транспорте сельско-хозяйственный поселок прежде всего соединяется с ближайшей железнодорожной станцией электрическим подъездным путем, по которому он вывозит для отправки на железную дорогу излишки своего урожая и по которому в него доставляются выписываемые из города сельско-хозяйственные орудия, искусственное удобрение и различные другие предметы.

Затем от поселка каждой весной в нескольких направлениях прокладываются по полям рельсы переносных узкоколейных железных дорог. По ним могут ходить электровозы с небольшими вагончиками (фиг. 73) и перевозить на поля удобрения, машины и орудия, а в конце лета вывозить с полей на гумно снопы, с гумна на мельницу зерно и с мельницы в амбар мешки с мукой.

За границей электрический транспорт применяется во многих сельских хозяйствах. Например, в Германии уже давно была устроена от одного из имений к ближайшей станции узкоколейная железнодорожная ветка. Сперва по ней вагоны возились лошадьми, но потом в 1905 году ее переделали на электрическую тягу и для движения вагонов применяли небольшие электровозы, которые передвигаю поезда весом в 3.000 пуд, со средней скоростью 25 верст в час. Два электровоза заменили требовавшиеся прежде 60 упряжек лошадей и за год перевозят более миллиона пудов клади.
7. Электрифинация кустарной промышленности и сельсно-хозяйственных мастерских.
Электричесний В России есть много деревень, в котопривод станков рых крестьяне кроме хлебопашества заникустарей. маются каким-либо кустарным промыслом:

Фиг. 73.
Электрическая сельско хозяйственная железная дорога.

прядут, ткут, вяжут, изготовляют деревянные и металлические изделия, занимаются гончарным ремеслом и так далее.

В избах многих из кустарей можно встретить различные станки, употребляемые ими для производства.

Кустарь работает и вместе с тем сам же приводит станок ногами или одной рукой в движение; вследствие этого он сильнее утом-

Фиг. 74.
ПІвейная машина, работающая от электрического двигателя ляется и не может так тщательно исполнять свое дело.

Установить в избе для станка кустаря паровой или керосиновый двигатель, конечно, нельзя, но очень легко можно приспособить для такого станка двигатель электрический (фиг. 74-75), если имеется для этого электрическая энергия.

Требуемые в кустарном производстве электрические двигатели очень ма-лы-всего в однучетверть или половину лошадиной силы; их можно легко прикрепить к станку, или же поставить на пол, а со станком соединить посредством ремня. Электри

Фиг. 75.
Элеккрчческии. свер-
лильный станок. ческий двигатель не грязнит поме щения и работает почти совершенно безшумно.

Расход электричества на часовую безостановочную работу одного электрифицированного станка составляет от четверти до половины киловатт-часа и по довоенным ценам обходился бы приблизительно в 3.5 копеек

За границей, например в Германии, многие кустари уже пользуются электрическим мотором для движения своих станков и, благодаря его применению, производят в течение рабочего дня значительно чение рабочего дня
производили раньше

Фиг. 76.
Электрические ручные сверлильные приборы для плотничьих работ.
Применение элен- В селах и деревнях для ремонта сельскотрическооо дви-
гателя для сель- хозяйственных машин, орудий, телег и для гателя для сель-
ско-хозайстве-
ковки лошадей устраивают кузницы и сленых мастерских сарные мастерские.

Если в селе или деревне есть электрический ток, то для облегчения труда рабочих и для ускорения работы в этих мастерских следует поставить электрические двигатели для раздувания кузнечного горна, для привода станков и для вращения точильного камня. Для раздувания кузнечного горна достаточен двигатель в одну треть, а для вращения точильного камня в одну четверть лошадиной силы. Для небольших токарных и сверлильных станков идут двигатели по 1 лошадиной силе (фиг. 77 и 78).

> 8. Электрическое освещение.

электрические
Электрическое освещение получается от лампы накали

скими лампами. Самыми распространен ными из них являются электрические лампы накаливания (фиг. 79).

Фиг. 77.
Электрифицированная сельская кузница и слесарная мастерская

Фиг. 78.
Столярная мастерсквя, рапотающая от электри ческого двигателя.

Лампа накаливания состоит из небольшого со всех сторон закрытого стеклянного сосуда (баллона), в который впаяна тонкая металлическая проволока или тонкий угольный волосок.

Когда электрический ток проходит по такой проволоке или волоску, он накаливает их до белого каления и они начинают ярко светиться.

Электрические лампы изготовляются на разные силы света и каждая лампа определяется в зависимости от того, сколько зажженных свечей она. может заменить

Например, электрическая лампа в 100 свечей дает столько же света, сколько его могут дать сто горящих стеариновых свечей вместе.

Для освещения жилых помещений, обыкновенно, употребляются лампы в пять, десять, шестнадцать и двадцать пять свечей, для освещения же дворов, улиц и площадей употребляют более сильные лампы.

Электрическая лампа расходует электрическую энергию только тогда, когда горит, и требует ее тем больше, чем больше испускает света.

Так, одна лампа в сто свечей возьмет столько же электрической энергии, сколько ее необходимо для четырех двадцатипятисвечных ламп за одинаковое время горения.

Кроме того, расход электрической энергии зависит от устройства лампы.

Электрические лампы с металлической проволокой или так-называемые: „металлические б берут на каждую свечу за один час горения одну тысячную киловатт-часа электрической энергии, тогда как лампы угольные, то есть имеющие вместо проволоки угольный волосок, потребляют на каж-

Фиг. 79.

Лектрическая лампа накой нитью. Нахоляиче а горлышке (доколь) ламцыфры показывают, то эта аампа изготовлена для напряжения 110 вольт может давать силу свеампа вставляется в патрон, изображенный сверху, к которому по изолированному двойному виэлектрический ток.

дую свечу в час уже три с половиною тысячных , кило ватт-часа. Таким образом, за десять часов непрерывного освещения металлическая лампа силою света в 100 свечей израсходует один киловатт-час электрической энергии, а лампа угольная тою же силою света и за то же время возьмет около трех с половиною киловатт-часов.

Значит освещаться металлическими лампами много выгоднее или, как говорят, экономичнее, чем лампами угольными, и потому лампы с металлической проволокой называются также часто экономическими.

Стоит металлическая лампа дороже, чем угольная (до войны хорошая металлическая лампа силою света в 16 или 25 свечей продавалась по 1 рублю, а такая же угольная по 30 копеек), однако, меньшим расходом электричества металлическая лампа скоро оправдывает свою дорогую цену.

Угольные лампы прочнее металлических и поэтому употребляются только в тех случаях, когда подвергаются толчкам или сотрясениям, например, в переносных лампах для осмотра двора и в лампах, подвешиваемых на тележках электрических плугов.

Пропускать через электрическую лампу можно только ток того напряжения, для которого эта лампа предназначена, поэтому всякий хозяин, имеющий у себя электрическое освещение, должен знать, какого напряжения у него ток, чтобы купить подходящую лампу.

На каждой электрической лампе всегда бывает написано, для какого напряжения она изготовлена и какую - силу света дает при горении.

Электрическая лампа накаливания с металлической проволокой может гореть непрерывно около полутора тысяч часов, таким образом, крестьянину для освещения его избы одной лампы хватит более, чем на год.

Долго горевшая лампа сперва темнеет, а потом перегорает, когда разрываются сами собой ее проволочка или угольный волосок.

Для сильного освещения за последние перед войной годы появились еще новые лампы накаливания, которые называются полуваттными, в них накаливается тоже металлическая проволока, но только сама лампа изготовляется несколько иначе, чем обыкновенная металлическая (фиг. 80).

Полуваттные лампы бывают силою света начиная от 50 и до нескольких тысяч свечей. Расходуют они электрической энергии на свечу в час вдвое меньше, чем лампы металлические (по одной двухтысячной киливатт-часа) и, следовательно, осве́щение ими обходится в два раза дешевле, но сами они стоят дороже.

Для сравнения различных ламп накаливания между собою укажем сколько стоило прежде освещение одной лампой силою света в 100 свечей за один час, а именно:*)

1) Для лампы угольной - около 7 копеек.
2) \quad 3) \Rightarrow металлической \quad п $\quad 2$,

Каждая лампа накаливания имеет приделанное к ее стеклянной части как бы медное горлышко или цоколь, снабженный винтовой нарезкой

Благодаря этому цоколю лампу можно легко вставлять (ввинчивать) или вынимать из предназначенного для нее приспособления (патрона) (фиг. 79), к которому по проводам подходит электрический ток.

Чтобы зажигать и тушить электрическую лампу, употребляется особый приборчик, который называется выключателем (фиг. 81). Если повернуть один раз ручку выключателя, то электрический ток станет проходить через лампу и она начнет светиться, если повернуть второй раз ту же ручку, то электрический ток проходить через лампу перестанет и она погаснет
*) Считая, что по довоенным денам элевтрическая энергиядля освещевия отпускадась в среднем по 20 код. за один ввдоваттчас.

Электрическую лампу можно зажигать и тушить, находясь далеко от нее, например, можно поставить выключатель у двери и, входя в комнату, зажигать лампу, находящуюся в противоположном конце помещения.

Лампы и выключатели соединяются проводами с главными проводами, идущими от электрической станции или от трансформаторной подстанции.
Фиг. 81.
Электрический
выключатель со снятой
электрическое
освещение дере. Для внутреннего освещения, т.-е вень. освещения, устраиваемого в домах, провода берутся изолирован-

Фиг. 82.
Электричество в крестьянской избе. С потолка спускается электрическая лампа, воторая зажигается и тушится выключателем, расположенным слева от тилятор для проветривания помещения: он пускается и останавливается выключателем, находящимся справа от окна. ные (покрытые резиной и оплетенные пряжей) (См, фиг. 12 и 13) и протягиваются по стенам и потолкам на небольших фарфоровых подставках (роликах) (фиг. 82).

При устройстве электрического освещения в крестьянских избах, где вследствие тесноты провода могут быть случайно порваны, их часто вкладывают в особые металлические трубки, которые прикрепляют к стенам и потолкам.

Закрытая проводка в трубках, хотя и стоит дороже проводки открытой на роликах, но она защищает провода от повреждений.

Электрические лампы или опускаются с потолка или прикрепляются к стене на особых поддержках. Бывают также переносные лампы, которые можно ставить настол и носить по всему помещению.

Электрическую лампу надо брать тем сильнее, чем больше освещаемое помещение. Для горниц в крестьянских избах вполне достаточны лампы по 16 свечей, а для сеней-по 10 и даже по 5 свечей.

Чтобы не тратить без пользы электричества, надо зажигать электрическую лампу только тогда, когда освещение необходимо и тушить ее всякий раз, когда надобности в освещении больше нет, Как показала практика, в среднем крестьянском хозяйстве для домашнего освещения и для освещения двора и служб расходуется ежегодно электрической энергии приблизительно 70 - 80 киловатт-часов общею стоимостью около 15 рублей.

Для наружного освещения берутся более сильные лампы, по возможности полуваттные, и подвешиваются они на высоких деревянных столбах (фиг. 83). Для освещения деревенских улиц достаточны лампы по 200 свечей. Их лучше всего помещать на столбах на высоте $2^{1 / 2}$ сажень над землею по обоим сторонам улицы через одну лампу на каждой стороне (в шахматном порядке). Таких ламп для довольно хорошего освещения ставят на версту улицы по 8-10 штук.

Провода для освещения улиц употребляются неизолированные (голые) и подвешиваются на столбах на фарфоровых или стеклянных изоляторах (см. фиг. 11). Для ламп уличного освещения, часто не ставят

Фкг. 83.
Электрический фонарь для наружного освещения. Поставленный на столбе воляет зажигать и тушить лампу. отдельных выключателей, а зажигают все лампы сразу или по частям из одного места.

Крестьянский двор тоже очень важно освещать, особенно когда на нем по вечерам или ночью производятся работы, например, обмолачивание и провеивание хлеба,

приготовление корма для скота, запряжка и отпряжка лошадей и так далее. Для освещения двора на столбе или на наружной стене избы ставят лампу в 50 или даже в 32 свечи.

Затем электрическое освещение очень удобно применять в дворовых постройках: в конюшнях, на скотном дворе, в сараях, погребах, клетях (фиг. 84).

Фиг. 84.
Электрическое освещение скотного двора
Во всех других местах, где производятся какие-либо сельско-хозяйственные работы посредством электрического двигателя, почтй всегда можно присоединить к проводам, идущим к мотору, одну или несколько электрических ламп и дать от них освещение, например, для ночных работ на гумне, для ночной молотьбы в поле, для ночной вспашки электрическим плугом и проч. (См. фиг. 47).
освещение полей Очень часто бывает необходимо законпрожектором. чить быстро какие-либо полевые работы, но особенно весной и осенью этому мешает рано наступающая темнота.

Чтобы дать возможность работать в поле вечером и даже ночью, можно поля освещать прожектором, тоесть особым сильным электрическим фонарем, который на много верст от себя дает полосу яркого света. Прожектор знают все бывавшие на войне, где он применяется для освещения и обнаруживания неприятельских позиций

на суше, неприятельских кораблей на море и неприятельских аэропланов в воздухе.

Для освещения по-
лей, расположенных вокруг деревни, в ней ставят на высокой постройке, - например, на пожарной вышке, сильный прожектор и его повертывают в сторон.у того поля, накотором производятся ночные работы (фиг. 85).

Средний прожектор с поперечником зеркала в один apшин с четвертью (90 сантиметров)дает пучек света в 60 миллионов свечей и может хорошоосветить поле, находящееся от него на расстоя-

Электрический прожектор в деревне для освещения полей. нии $3-4$ верст. Такой прожектор расходует в час электрической энергии приблизительно 9 киловатт-часов, что стоило бы прежде около 1 руб. 80 коп.

Зимою во время метели прожектором можно подавать знаки сбившимся с дороги путникам.

Преимущества Еще не так давно русский крестьянин элентичесного освения. освел свою избу горящей лучйной, потом
освения с появлением керосина наша деревня стала освещаться дешовой керӧсиновой лампой, дающей мало света, но много копоти и чада. Керосиновое освещение требует за собой самого внимательного надзора. Громадное количество пожаров сел и деревень произошло, благодаря неосторожному обращению с керосиновыми лампами. В городах пробовали применять болеесовершенные лампы и различные другие способы освещения (например газовое), но так как при них свет получается от горения какого-либо Элевтричество. А. Куливовсвий.

вещества, то всегда происходит порча окружающего воздуха, появляется копоть, а самый огонь может явиться причиной пожара. При электрическом освещении лампами накаливания свет происходит от накала металлического или угольного волоска, а не от горения,-поэтому здесь нет ни копоти, ни порчи воздуха. Сама электрическая лампа остается почти холодной и не может поджечь стены или потолка, к которым она подвешена; даже при ударе или падении она, разбившись, сейчас же гаснет.

Конечно, как мы уже говорили, при электрическом освещении пожар тоже может возникнуть при плохом состоянии проводов, но если проводка время от времени осматривается техниками и поддерживается в исправности, то эта опасность почти совершенно отпадает.

Электрическое освещение дает ровный белый свет, силу которого можно изменять по желанию, заменяя поставленные лампы другими более сильными или более слабыми.

Вместе с полной чистотой и безвредностью для здоровья освещение электрическими лампами накаливания дает больше удобства,-оно не требует за собой никакого ухода, тогда как керосиновые лампы необходимо чистить, наливать керосином, переменять в них фитили.

Зажигаются и гасятся электрическиелампы мгновенно простым поворотом ручки выключателя.

Кроме всех указанных преимуществ перед другими способами, электрическое освещение оказывается и выгоднее их, например, (в довоенное время) керосиновая лампа силою света в 25 свечей расходовала в час керосина на 1 копейку, а электрическая лампа с металлической нитью такою же силою света за час горения тратила электрической энергии на ${ }^{1} / 2$ копейки, считая электричество по довольно дорогой цене: 20 коп. за киловаттчас. Но, как уже было указано, электричество от больших станций можно получать гораздо дешевле, тогда и освещение электрическими лампами окажется еще более выгодным.

В настоящее время электрическое освещение устроено во всех больших городах всего мира, но в деревнях, особенно у нас в России, оно применяется еще очень редко.

Объясняется это прежде всего неимением в деревнях электрической энергии; на постройку же для них отдель-

ных электрических станций у наспрежде не обращалось надлежащего внимания. При общей электрификации России каждый, даже самый незначительный поселок будет иметь возможность получить дешевое электричество и применить его для освещения.
Возможность при-
менения алектри-
Кроме электрических ламп к тем же менения электри- проводам, которые проведены в доме для тельных приборовов электрического освещения, можно присоев тех помещеннях, динять различные электрические нагревагде устроено эле- дельные приборы,-например, электрические осве щение. чайники (фиг. 86) и самовары для быстрого кипячения воды электрическим током; электрические сковороды и кастрюли для скорого при. готовления или подогревания пищи, когда не топится печь; электриче-

Фиг. 86.
Әлектрический чайник.
ские утюги (фиг. 87) очень удобные для глажения, потому что они накалены все время, пока ими пользуются,электрические печи для отопления помещений (фиг. 88); электриче-

Глаженье электрическим утюгом в портняжной мастерской.

Фиг. 88.
Электрическая печь для отопления помещений.

ские паяльники для пайки металлических вещей (фиг. 89) и мн. др.

Фиг. 89.
Работа электрическим паяльником.

9. Телефон и сигнализация.

Назначение теле- Телефоном называется такое электрифона. ческое устройство, посредством которого люди, находящиеся на далеких расстояниях другот друга, могут разговаривать между собою.

Для этого в каждом месте, откуда хотят вести разговор по телефону, устанавливают телефонный аппарат (фиг. 90), представляющий из себя небольшой ящик с двумя трубками, в одну из которых говорят, а в другую слушают. Все телефонные аппараты, расположенные в различных местах, соединяются проводами с телефонной станцией, на которой поставлен особый прибор, называемый коммутатором (фиг. 91). Благодаря ему, можно провода, идущие от каждого телефонного аппарата, соединять с проводом от любого другого аппарата и затем переговариваться по этим двум аппаратам.

Телефоны, главным образом, распространены в городах, но за последние перед войной годы у нас в России коегде уже начали устраивать телефоны в селах и больших деревнях.
Сельские теле.
Такие сельские телефоны очень просты, ства. требуют для своего оборудования сравнительно небольших расходов и дают много удобства.

Сельская телефонная станция устраивается, обыкновенно, при одном из учреждений, например, при почтовом отделении, сельском совете и т. д., где отводится небольшая комната для установки коммутатора.

Телефонные аппараты ставятся во всех сельских учреждениях, в больнице, школе и в избах тех крестьян, которые соглашаются принять на себя часть расходов по содержанию телефона.

Телефонный аппарат. 1-Трубка, в которую говорят.
2-Трубка, в которую слушают.

для подачи звонка. 4-Звонок.

Фиг. 91.
Телефонный коммутатор для соединения между собой 12 телефонных аппаратов

Для проводов, соединяющих аппараты с коммутатором телефонной станции, употребляют тонкую железную проволоку, протягиваемую вдоль улиц по деревянным столбам на фарфоровых или стеклянных изоляторах.

 ．ОНдЕоп моหшлाॅ эqБжоп о тОНБНદर

．（SC ．1лф）ธпэว хธцноя

se ． 7 ¢ Φ

 9H N YMOA EN RAOXId 9 H ，dTJOHЖOMEO\＆T99MN HNHRdTכ

 －NA9Oつ БqOTSTVMMOX NШOMOП NqП M9TSE N ，dTS日NqS\＆OTEsq

 qOgOTESq T9SHNPSH N YX

ЭЖИST GIUD STSPSH IdHÑO\＆OA NNכJO9 g

 RJdTNכOH OqTJIdO NTJSIDO NัOHHSA MSTンHVח MIdHH9I．9JSH

 －घSPSH ҮMOTEOП ． － dTNUVT dTSPSH N dTNTSAXSE RJdTSQSTכ OДSH qSЖOח RJN̆Nய

повертывает на нем ручку выключателя, - тогда все электрические колокола начинают громко звонить и извещают население о несчастии
10. Накечающиеся возможности применения электричества для целей сельского хозяйства в будущем.
электрическое растений.

Все описанные выше виды применения электричества уже давно испытаны на практике и распространены в сельском хозяйстве и сельском быту особенно за границей. Но, кроме них, намечаются еще новые, чрезвычайно интересные, важные и обширные возможности применения электричества для целей земледелия, которые пока находятся только в состоянии предварительного выяснения и исследования ученых.

К ним надо прежде всего отнести искусственное воздействие электричества на рост хлебов, овощей и других полезных растений или, так называемую, электро-культуру.

Подвергать растения действию электричества можно различными способами, но из них, давшим пока наилучшие результаты, является следующий: над полем, на котором произведен посев, протягивают на столбах на изоляторах тонкие провода, приблизительно на расстоянии $1-1^{1 / 2}$ саженей друг от друга и на высоте 2 саженей над землей. По этим проводам пускают электрический ток очень высокого напряжения в несколько десятков тысяч вольт. Электричество с проводов, как бы наподобие электрического дождя, истекает через воздух в землю и оказывает благотворное действие на посеянные растения.

Рядом с полем, покрытым проводами, берут такое же поле, засеваемое одинаковыми семенами и совершенно так-же обрабатываемое, но только не подвергаемое действию электричества. Это поле служит для проверки и называется контрольным

Продолжительные опыты показали, что на «электрическом» поле получают урожаи хлебов почти в полтора раза больше, а сами растения созревают скорее, чем на соседнем контрольном поле (фиг. 93).

Имеются надежды на получение, благодаря электричеству, еще более обильных урожаев и на такое ускорение произрастания растений, которое позволит собирать в течение одного лета по две жатвы.

Для применения указанного способа электрокультуры на практике необходимо рядом опытов выяснить наилучшие условия для электрического выращивания различных растений, например, наиболее подходящее напряжение электрического тока, наилучшее размещение проводов, время суток, в которое полезнее всего подвергать растения действию электричества и некоторые другие стороны этого интересного вопроса.

©ur. 93.
Влияние электричества на выращивание растений (электрокультура). На верхнем снимке изображены растения, подвергавшиеся действию электричества; на нижнем-растения, посаженные на контрольном поле, одновременно спервыми, и действию электричества не подвергавшиеся.

Воздействие на развитие растя-
илектрического
света.

Затем улучшение урожаев и ускорение роста посевов достигается также посредными электрическими лампами. Электрический свет заменяет до некоторой степени свет солнца и под его действием растения продолжают развиваться и ночью. Здесь также производятся учеными опыты, на основании которых этот способ, повидимому, получит большое распространение в земледелии. На фиг, 94 показано растение через четыре недели после его посадки, росшее только при обыкновенном дневном освещении солнечным светом, а на фиг. 95 изображен участок ого-

рода с тем-же растеньем и тоже через четыре недели после посадки, но освещавшийся по ночам электрическим светом.

Фиг. 94.

Фиг. 95.
Влияние электрического света на выращивание растений.
На фиг. 94 изображены контрольные растения через четыре недели после их посадки и действию электри-
На фиг ${ }^{5}$ ческого света не подвергавшиеся.
На фиг. 95 показаны такие-же растения через четыре
недели после их посалки едели после их посадки, но освещавшиеся по ночам
сильным электрическим сильным электрическим светом.
Наконец, в последнее время в Америке семян. был найден еще один способ применять электричество для повышения урожайности.

По этому способу семена растений перед их посадкой опускаются в сосуд с водой, в которой растворена какаялибо соль. Через воду несколько времени пропускают

слабый электрический ток, затем семена вынимают, высушивают и сохраняют до посева совершенно сухими.

От действия электричества в семенах происходят ка-кие-то изменения, благодаря которым такие семена дают в один с четвертью раз больший урожай, чем семена, действию электричества неподвергавшиеся.

Кроме того, самое зерно во всходах этих семян лолучается более крупным.

Применение элек-
тричества для Как известно, на полях очень часто поялляются различные насекомые, которые портят посевы.
Такие насекомые называются вредителями. Их стараются уничтожать различными способами; применяют для уничтожения их такжё и электричество.

Для этого, например, на небольшую тележку ставят электрический прибор высокого напряжения, от которого электричество может с особой гребенки, приделанной под тележкой, перескакивать в землю.

Тележку катают по полю, причем электричество, перескакивающее в землю, убивает находящихся в ней насекомых.

Использование атмосферного электричества

 для работы элек трических двигтелей.
Другие возможности открывает изучение атмосферного электричества. Атмосферою называется слой воздуха, чество, которое названо ими атмосферным. Особенно много его бывает во время грозы. Благодаря ему, появляется молния, представляющая собою электрическую искру больших размеров.

Если поднять на большую высоту в воздух металлическое острие и к нему прикрепить проволоку, другой конец которой приблизить к земле, то электричество, находящееся в верхних слоях атмосферы, пойдет по проволоке и, если ее конец расположен недалеко от земли, то оно пробьет воздух и уйдет в землю, причем образуется большая искра, напоминающая молнию.

Таким способом давно обнаружили атмосферное электричество, но не умели его применить с пользой. Между тем, запасы атмосферного электричества довольно велики и

могли бы дать даровую электрическую энергию для различных целей.

Только в последние годы удалось построить электрические двигатели, которые работают от электричества, получаемого из воздуха. С этими двигателями пока еще производятся только научные опыты, но можно ожидать, что в не далеком будущем они уже окажутся применимыми на практике. В таком случае сельское хозяйство будет в состоянии пользоваться услугами электромотора независимо от электрической станции и электрических сетей проводов.

Применение элек-
трических разрядиков для предот- щее во время грозы молнию, является таквращения градо- же причиною образования града, причи-
бития бития. няющего иногда громадный вред посевам.
Тучи, если они имеют в себе большой заряд электричества, дают вместо дождя град. Поэтому, для предотвращения градобития при появлении дождевых облаков недавно начали применять особые электрические разрядники. Посредством их электричество из облаков отводится в землю, и тогда град уже образоваться не может, а из тучи идет дождь.

В. Снабжение сельского хозяйства электрической энергией.

Снабжение от рай- Для того, чтобы электричество могло онных станций. получить в сельском хозяйстве самое широкое применение, надо во-первых, чтобы оно в достаточном количестве имелось в распоряжении крестьянина в любом месте его хозяйства, то-есть в поле и на гумне, на дворе и в избе, а во-вторых, чтобы оно было дешево.

Таким образом, успех применения электричества в сельско-хозяйственной области зависит от хорошо развитой электрической сети проводов и от дешевизны электрической энергии. Самое дешевое электричество можно получать от электрических районных станций.

Районною станцией называется большая (мощная) электрическая станция, расположенная вблизи местонахождения необходимого для нее топлива или пользую-

щаяся силой воды и снабжающая электрической энергией целую область на несколько десятков и даже сотен верст кругом себя. От районных станций идут по многим различным направлениям провода высокого напряжения, от которых можно в любом месте брать электрический ток и, понизив посредством трансформатора его напряжение, применять для какой угодно цели. (См. фиг. 22).

Районные станции имеют мощные машины и совершенное техническое оборудование, благодаря чему на каждый вырабатываемый ими киловатт-час электрической энергии они расходуют меньше топлива, чем станции небольшие. Кроме того, само топливо обходится районным станциям дешевле, так как добывается вблизи них и не вызывает больших расходов на свою перевозку.

Затем, если на произведенную станцией энергию разложить расходы по содержанию личного состава для обслуживания и управления, то для большой станции на каждый киловатт-час придется меньше издержек, чем для станции небольшой мощности. Действительно, как дина-мо-машина большой станции мощностью, например, в десять тысяч киловатт, так и машина станции малой мощности, скажем в сто киловатт, требует и та и другая для ухода за собой по одному машинисту-электрику, а между тем, первая машина за один час выработает в сто раз больше электричества, чем машина вторая.

В общем на больших районных станциях производство электрической энергии обходится в среднем, если станция паровая,-по $3-5$ *) копеек, а для водяных станций еще дешевле.

Мы уже видели, что всякая станция работает всего выгоднее при полной равномерной нагрузке, т.-е. в том случае, если ее динамо-машины все время вырабатывают те количества электрической энергии, для которых они предназначены. Между тем, сельско-хозяйственный потребитель электричества невыгоден для станции, потому что он расходует электрический ток, главным образом, только летом и вдобавок неодинаково в различные месяцы и в различные часы суток.

В самом деле, наибольшее потребление электричества будет иметь место в период вспашки и в конце лета во

[^7]время уборки и обработки урожая, поэтому отдельные электрические станции для сельского хозяйства оказались бы не так выгодны в их работе, как мощные районные станции, снабжающие электрической энергией также города, фабрики и заводы, расположенные в их районах, потому что эти станции имеют возможность работать при более полной и равномерной нагрузке. Мы уже говорили, что разработанным в настоящее время планом общего электроснабжения России предполагается покрыть всю Россию сетью районных станций, которые обеспечат ее сельское хозяйство необходимой дешевой электрической энергией. За границей, где проведение электрификации страны не составляет предмета забот государства и находится в частных руках,-там районные электрические станции сооружаются, главным образом, акционерными обществами и служат преимущественно для удовлетворения потребностей промышленности. Электрическая энергия отпускается ими, особенно для сельского хозяйства, по ценам значительно более высоким, чем она стоит самим станциям.

Для предоставления населению возможности повсеместного применения электричества в сельском хозяйстве, например, в Германии, в некоторых местах организованы часто на кооперативных началах особые проводниковые общества, которые, не имея собственной станции, покупают электрическую энергию оптом на ближайшей существующей районной станции. Проводниковые общества строят на свои средства только электрические сети и по ним передают электричество по области, продавая его отдельным сельско-хозяйственным потребителям.

Сельские хозяйства оплачивают расходуемую ими электрическую энергию редко по счетчикам, а чаще всего по оптовым тарифам, которые бывают весьма различны: в некоторых оплата производится по количеству обрабатываемой земли, в некоторых по числу и характеру электрифицированных сельско-хозяйственных машин, а ино-гда-в хозяйствах, занимающихся преимущественно ско-товодством,-плата взимается по числу голов крупного и мелкого скота, на приготовление корма которому, главным образом, и расходуется электричество в этих хо-
зяйствах

электрический ток низкого напряжения прямо от них по проводам передается в окрестные деревни, или же употребляют динамо-машины, дающие переменный ток, который сперва повышается до нескольких тысяч вольт (например 3.300) и идет по деревням, где он уже понижается в трансформаторных подстанциях до низкого напряжения (210-120 вольт).

©ur. 96.
Гидроэлектрическая станция на небольшой реке, снабжающая электрической энергией ближайшие села и деревни.

Станции постоянного тока проще и их в настоящее время легче оборудовать оставшимися в России материалами, но работают они не так выгодно, как станции переменного тока высокого напряжения.

Размеры округа, который может снабдить электричеством окружная станция определенной мощности, зависят от дальности расположения деревень и величины их, но в среднем для Центральной России можно считать, что окружная станция мощностью в 35 киловатт в состоянии обслужить все селения, находящиеся вокруг нее на площади в 15 квадратных верст, а станция в 100 киловатт обслуживает площадь в 40 квадратных верст, т.-е. в среднем на каждую квадратную версту нужна мощность станции в $2^{1} / 2$ киловатта.

Окружные станции служат, главным образом, для целей сельского хозяйства, т.-е. дают освещение деревням и электрическую энергию для вращения сельско-хозяй-

ственных машин, но для выравнивания нагрузки этих станций к ним бывает очень выгодно присоединять также моторы небольших промышленных предприяии, сахарных и винокущихся в том же округе, например, сах повств, механических ренных заводов, крахмастерских и т. п.
и деревообделочных мастском хозяйстве расходуется боль-
Электричества в сельском хызшая нагрузка бывает по ше всего ле ола каботают электрические сельскоутрам в те часиственные машины, а зимою-с наступлением темно-
хоз ты, когда зажигают освещение.

Такие же промышленные предприятия, как сахарные заводы, работают сильнее всего зимою днем, когда электрическая энергия для целей сельского хозяйства почти совсем не берется.

Производство одного киловатт-часа электрической энергии на окружных станциях обходится, конечно, дороже, чем на станциях районных, но так как окралах и станции могут сооружаться на коопе тнергия отпускается принадлежат самим крествна все же невысокой стоис них по своей сравнительно все же невысокой стои мости.

Сооружение окружных электрических станций переменного тока мощностью от 35 до 100 киловатт с сетью высокого напряжения, а также полное оборудование окрестных деревень электрическим освещением и установка в них моторов для сельско-хозяйственных машин требует в среднем расходов (по до-военным ценам) на киловатт мощности станции:

1) Для гидроәлектрических станций-по 2.500 рублей.
2) Для станций паровых - по 2.000 рублей.
3) для слия снабжения электричеством селений, Например, для округе площадью в 20 квадратных расположенных в окру мшностью в 50 киловатт и, если верст, нужна станция можно поставить запруду, то станесть река, на костоить водяную и тогда сооружение всецию следурт устойства потребует издержек в го электрическо
125.000 рублей

Если же подходящих условий для гидроэлектрической станции нет, то придется построить станцию с паровым двигателем и в таком случае все сооружение обойдется в 100.000 рублей.

Эуектричество. А. Куликовсей.

Хотя постройка водяных станций обходится дороже паровых, но зато гидроэлектрические станции работают выгоднее, потому ч'то не требуют топлива.

Местные сель-
ско-хозяйствен-
ско-хозяйствен- самостоятельного снабжения элекные электриче- трической энергией отдельных сел, деревно станции. вень, хуторов и советских хозяйств в них могут сооружаться небольшие местные сельско-хо-
Для деревень электрические станции.
Для деревень до 50 дворов, а также для хуторов и небольших совхозов можно считать достаточною мощ. ность станции в 10 киловатт, для деревень в 100 дворов мощность станции берется около 15 киловатт, а для деревень и сел более населенных можно принимать мощность станции по 12 киловатт на каждую сотню дворов.

В целях получения наиболее дешевого электричества, надо прежде всего стараться использовать для работы станции даровую силу воды или ветра, если же это оказывается затруднительным, то для вращения динамо-машины на местной станции ставят паровой двигатель или двигатель внутреннего сгорания.

Если в деревне или хуторе имеется водяная мельница, то необходимо прежде всего выяснить, не может ли ее водяное колесо вращать, помимо жерновов, еще и дина-мо-машину, потому что тогда устройство местной станции сильно облегчается и требует только небольших расходов. Если мельницы нет, но можно легко поставить запруду на протекающей поблизости реке, то в этом случае также устраивают гидроэлектрическую станцию.

В тех местностях, где дуют частые ветры, бывает выгодно строить станции ветро-электрические, на которых динамо-машины приводятся во вращение от ветряных двигателей (фиг. 97).

Самые простые ветряные двигатели всем хорошо известны по их применению на ветряных мельницах.

Для ветро-электрических станций берут ветряные двигатели более совершенной конструкции и сделанные из металла. Они могут при одной и той же силе ветра давать больше работы, чем старинные мельничные ветряки.

Работа, передаваемая ветряными двигателями, зависит от скорости ветра и от поперечника ветряного колеса.

Скоростью ветра называется то расстояние, которое он проходит в одну секунду. Она измеряется оспбыми приборами.

При среднем ветре (имеющем скорость около 2 саженей в одну секунду) ветряное колесо с поперечником в 6 аршин дает работу в половину лошадиной силы, а колесо с поперечником в 14 аршин производит работу в 4 лошадиных силы.

Фur. 97.
Ветро-электрическая станция.
То же колесо с поперечником в 14 аршин, но при более сильном ветре (скоростью в 3 сажени в одну секунду) может дать уже работу в 8 лошадиных сил.

Ветряный двигатель заставляют вращать динамо-машину и, таким образом, используя даровую силу ветра, получают ценную электрическую энергию.

Затруднение только в том, что ветра не дуют непрерывно, а иногда наступают совершенно безветряные промежутки в несколько дней. Чтобы не оставаться на это время без электричества, динамо-машину пускают работать в такие промежутки от какого-либо другого двигателя.

Так, устанавливают на ветряной станции небольшой двигатель внутреннего сгорания, который на время прекращения ветра соединяется с динамо-машиной и пускается в ход, а когда ветер начинает дуть вновь, -этот двигатель останавливают и динамо-машину соединяют с ветряным колесом.

Но можно на безветряные перерывы запасать энергию от самого ветряного двигателя. Например, в то время,

- 132 -

когда ветряная станция при ветре в состоянии дать элек. трической энергии больше, чем ее расходуется, то избыток электрического тока можно использовать для работы водяного насоса. Этот насос должен накачивать воду из ближайших реки или озера в большой бак, поставленный на возвышении. Во время же прекращения или ослабления ветра запасенную в баке воду пускают по трубе на особое водяное колесо, которое, вращаясь, приводит в движение динамо-машину. Указанным способом достигается непрерывная работа динамо-машины ветро-электрической станции без какой бы то ни было затраты топлива. При нем необходимо иметь вблизи станции много воды, что не всегда бывает на практике.

По другому способу на ветро-электрической станции устанавливаются особые электрические приборы, называемые аккумуляторами (фиг. 98). Они во время ветра берут в себя избыток производимой станцией электрической энергии, а во время остановок ветряного двигателя отдают запасенное ими электричество прямо в | машин. |
| :--- |
| мля освещения и работы сельско-хозяйственных |

Аккумуляторы дорого стоят, в настоящее время их трудно достать и они нуждаются в хорошем уходе.

В России на морских побережьях, а также в степных областях дуют частые ветры и в этих местностях ветро-

В тех случаях, когда нельзя воспользоваться ни силою воды, ни силою ветра, на местных сельско-хозяйственных станциях ставятся паровые двигатели или двигатели внутреннего сгорания. Очень удобно в качестве паровых двигателей для местных станций прим няеюоторых ровые локомобилй сельских хозяйствах.

Динамо-машины для местных сельско-хозяйственных станций берутся, обыкновенно, постоянного тока и вырабатываемая ими энергия прямо от станции по проводам низкого напряжения передается по селу или деревне в крестьянские избы и другие места, где есть потребность в электричестве.

На случай порчи главной динамо-машины на этих станциях следует иметь запасную половинной мощности и снабженную отдельным двигателем внутреннего сгорания.

Электрификация деревни в 50 дворов, заключающая в себе сооружение паровой локомобильной электрической станции, подвеску сети проводов, устройство освещу мона деревенских улицах и в избах, а такжези и водокачторов для молотилки, мельницы, сом ценам) в 20.000 руб. ки, требует расхода (по до-военным деревни в 100 дворов стоит 30.000 рублей.

подвижные элек Подвижные электрические станподвижные элек $\begin{gathered}\text { тричекиие стан- ции (фиг. 5), о которых мы уже говорили, }\end{gathered}$ ции. состоят из небольшого керосинового или бензинового двигателя и динму с машиной и двигателем на общей железной раме. Раму с машизить на тележке. можно переносить на руках илначаются, главным обра-

Подвижные станции предназнач побоботке собранного им урожая.

электри-
При подвижной станции имеется комплект эл провоческих двигателей, снаи в несколько десятков саженей. дами длиною каждый в несколько досе уборки урожая подвижная станция с моторами

После уборки урожая подви и устанавливается вблизи привозится воторым располагаются молотилка, веялка навеса, сод корезка, небольшая мельница и другие имеютриер, соломорезка, щиеся сельско хозяйтвкрепленным на земле электричеремнем соединяют с укрепленным на земле электриче-

ским двигателем подходящей силы (мощности). Ток от станции к электродвигателям подводится по изолированным проводам, протянутым на шестах или даже прололоженным прямо по земле. При работе станции крестьяне нейшей обработки

В тех местно
зяйства, подвижную стане крестьяне имеют крупные хокрестьянина, и наю станцию подвозят ко двору каждого сельско-хозяйственные машины соединенные с двигателями

После обработки всепо уры
цию перевозт ви всего урожая в одном селении стансят большую пользу, пее соседнее. Такие станции приносят большую пользу, так как дают возможность произнезначительном количест очень быстро и при самом только для обслуживания машиичих рук, необходимых Для наблюдения
электрических двигателей при кай подвижной станции и монтеры-электротехники, которыедой станции находятся ционный двигатель с дин, которые пускают в ход стан-

Подвижные станции делаютсяой и управляют ими. ностью до 15 киловатт, так как болеоыкновенно, мощслишком тяжелы и их трудно бок более мощные станции шим дорогам.

Электрические
сети для целей сельского хозяй-

ства.
Полная электрификация сельского хозяйства возможна только в тех местностях, районных и окружных станций, так эактричеством от, ско-хозяйственные станции и станции как местные сельгут вследствие своей зованы для электрификации полевыщности быть испольхватило бы даже для одного лемешного плуга. для одного электрического многоПоэтому плуга
расположенныминые с.-х. станции имеют свои сети их провода идут полько в пределах села или деревни, энергию во дворы крестьян и доставляют электрическую Сельско-хозяйстретьян.
ных станций прежде всеготи районныхи окружтом, чтобы от них можно о проводятся с таким расчеэнергию во всех селениях дано получать электрическую

дача заключается в том, чтобы дать возможность воспользоваться электричеством при полевых работах, т.-е. для пахоты, для уборки урожая, для молотьбы на поле и проч. Для этой второй цели все обрабатываемые землйпокрываются сетью проводов, имеющей следующее устройство: через поля проводится на столбах одна продольная магистраль, от которой по обе стороны расходятся Под-- вешенные тоже на столбах поперечные употреблении в полевых работах элекри проводам гибким они присоединяются к этим поперечой вспашке оли те кабелем. Например, при электрической вопеке одна те-лежка-лебедка присоединяется к однму коперечному проводу, а другая к соседнему; произвпречных проводов, а передвигаются в направлении попере сети указанного
 устройства, для изготовляемых в настоящее время в Рос сии электрических плугов, требуют линии проводов в 28 верст на каждую тысячу десятин.

Чтобы сократить количество проводов и удешевить все Чрудование, применяют переносные сети.
оборудование, применяо вкопанных в землю столбах подвеши-
В них также на вкопанных в семнем длиною по 3 верваются постоянные магистрали, в и присоединяемые к магисты на каждую тысячу десятин, тока к той или другой страли провода для подводки тока к поле, делаются электрической машине, раются на особых переносных мачтах (фиг. 99).

Когда машина окончила работу' или перешла в другое есто, провода и мачты или убирают, или переставляют в ином направлении.

Каждый из упомянутых выше русских әлектрических плугов будет снабжен комплектом переносных мачт с проводами длиною в $4 \frac{1}{2}$ версты.
Г. Осуществление сельскохозяйствөнной электрифинации в России.

Применение электричества в сельском Применение эосии совсем новое.

Необходимость
объединяющего руководства
осударства в
ироведении сель-
скохозяйствен ной элентрифинации.

До сих пор им занимались лишь за границей, и конечно многое из того, что там достигнуто, можно перенять и использовать у нас, но все же надо помнить, что русское

Фиг. 99.
Показанным справа буравом пелеских сетей в сельском хозяйстве вставляется столб, укрепляемый клин ьями по оокам в земле, в которое дываются в устроенные на изоляторах вырезы.

сельское хозяйство в некоторых отношениях сильно отличается от сельского хозяйства других стран, поэтому выработанные там приемы и способы сельскохозяйственной электрификации должны быть приспособлны к выш условиям и даже в некоторых случаях заменены совершенно иными

Чтобы проводить электрификацию сельского хозяйства, необходимо прежде всего ознакомить с нею наше крестьянство и разъяснить ему значение и те выгоды, которые дает применение электричества. Такое ознакомление вызовет интерес и пробудит в населении желание использовать себе на помощь новую, плохо известную ему до сих пор, силу электричества.

Но так как произвести самостоятельно электрифика цию своего хозяйства не под силу отдельному крестьянину, который не может один строить для себя электриче скую станцию, покупать дорого стоющий электрический плуг и другие электрические машины, то здесь необходисамая широкая помощь государства с одной стороны, с другой обединение крестьян в кооперативные товарищества.

Для руководства всем делом сельскохо-
Органы, ведаю-
руководства всем делом селии и для
Органы, ведаю зяйственной электрификации в России кли хие сйственной хяйсния ведения его образован при Народном Комисэлектрифинацией, веденате Земледелия особый От дел по Элек-
и ихачи.
ар трификации Сельског
з задачи которого входит: Во-первых, научно-техническая и экономия электричераоотка волй сельского хозяйства в России. стванакомление населения с электрифика-
Во-вторых, ознакомление населения с электрияикацией сельского хозяйства и разъяснение ему ее значения.
В-третьих, производство работ по электрификации сельского хозяйства, сооружение электрических станций и сетей сельско-хозяйственного значения, электрическое оборудование сельских хозяйств, снабжение их электрическими машинами, приборами и материалами, а также знающим техническим персоналом для обслуживания.

В-четвертых, руководство сельскохозяйственными работами в электрифицированных районах и заботы об объединении крестьян в кооперативные товарищества для совместной деятельности в области электрификации сельского хозяйства.
Отдел Электрификации Сельского Хозяйства постепенно, по мере надобности, учреждает свои отделения (Губэлектроземы) в губернских городах при Губземотделах,эти отделения ведут в своих губерниях работу по электрификации сельского хозяйства. На них, главным образом, лежит заведывание уже законченными электрическими сельскохозяйственными установками и их обслуживание.

Выполнение новых крупных электрических оборудований, часто захватывающих несколько губерний, ведется Районными Бюро Электрозема, объединяющими в себе работы по электрификации сельского хозяйства в целых областях.
В местностях, в которых производятся значительные и ответственные сооружения по сельскохозяйственной электрификации, учреждаются также на время их постройки Агентства Электрозема, которые руководят всеми электростроительными работами и находятся в непосредственном заведывании своего Районного Бюро.

Районные Бюро и Губернские Отделения Электрозема состоят в ведении находящегося в Москве: Центрального Отдела Электрификации Сельского Хозяйства (Центральный Электрозем).

Другими органам, дополняющими работу Электрозема по сельско-хозяйственной электрификации, является Отдел ного Элтоплуг" в Главном Управлении Сельско-Хозяйственного Машиностроения, который ведает изготовлением электрических плугов и других электрических сельскохозяиственных машин

Кроме того, Управление Мелиорации Народного Комиссариата Земледелия работает в области применения электричества для целей орошения, осушения и других земельных улучшений.
подготовитеньные Работающие в указанных учреждениях
учн -тети чес-
кие работы по ние работы по
электрифиний инженеры и специалисты производят всю элентрифинаций подготовительную разработку различных ства.

ственных и кустарных районов с входящими в них селами и деревнями.

В большей части указанных установок производится сооружение отдельных электрических окружных и местных станций, главным образом, гидравлических.
меры, прини- Желая возможно полнее использовать мальзывания силы для целей сельскохозяйственной электриводы и ветра. фикации даровую силу воды и ветра, Электрозем:

1) Производит обследование небольших рек, чтобы выяснить возможность сооружения на них гидравлических станций.
2) Разрабатывает вопросы наилучшего сооружения водяных и ветряных электрических станций.
3) Принимает меры к заказу за границей водяных двигателей (турбин) и двигателей ветряных.
посылка под- Чтобы ускорить и облегчить населению вижных элентри- обработку урожая с помощью электрического двигателя, Электроземом были получены от Военного Ведомства 30 подвижных станций (фиг. 5), которые осенью 1921 года были посланы в те местности, где особенно испытывался недостаток в рабочей силе и сельско-хозяйственных орудиях.

Каждая станция мощностью 6 или 12 киловатт и работает от бензинового двигателя. При ней находятся комплект сельско-хозяйственных машин (молотилка, соломорезка, веялка, корнерезка) и четыре электрических двигателя для вращения этих машин. Станцию сопровождает несколько техников, ее обслуживающих.
Разработка пла-
В связи с изменением общей экономичеселением по вы- ской политики, Электрозем предполагает полненнин сеньько-организовать выполнение сельско-хозяй-
хозйстенной әлезтйствиннаииии. ственной электрификации в селах и деревэлектрификации. ственной электрификации в селах

По этому договору население нескольких сел и деревень, находящихся в одном районе, желающее произвести у себя электрификацию, может заключать договор с Электроземом, по которому Электрозем выполняет всю электрическую установку, пускает ее в работу и передает в полное распоряжение населения для дальнейшего использования и обслуживания.

Население же со своей стороны возмещает государству все расходы по оборудованию и стоимости машин и материалов. Это возмещение должно производиться на выгодных для населения условиях постепенно и в несколько сроков.

Подготовка тех- Развитие электрификации сельского хо нического персо- зяйства потребует знающих людей, знаконала дпя обслужи- зяйства этотй областью техники, для обслу-
вания установок мых с этой сельсск-хояяй-
ственной элен- живания сельско-хозяйственных электричестввннои элен- ских станций, сетей, электрических плугов, электрических сельско-хозяйственных машин и вообще всяких электрических сельско-хозяйственных установок.

С целью скорейшего получения таких лиц Электроземом учреждены в Москве одногодичные К урсы Инструк-торов-Техников по Электрификации Сельского Хозяйства.

Фиr. 100.
Изображенный на рисунке электрический двигатель в 2 лошадиных силы выполняет в сельском хозяйстве такую-же работу, как и две сильных лошади.

Список рисунков.
Φ иг.

1. Динамо-машина постоянного това для небольших элевтрических станций Внешнй вид паровой электрической станции средней мощности.
2. Распределительная доска электрической стии средней мощности.
3. Подвижная электрическаа станция в работе
4. Вольтметр.

Тинамо машина переменного това большой мощности.
8. Трансформатор.

Подвижной трансформатор на кодесах
Голые провода установлевный на стодбах
Изолированода, нодвешенные на фарфоровых изоляторах

4. Электрическиі̆ дзодрованннй провод (щнур). вращающий молотилу
. Әлектрический счетчик.
. Паровая машина.
Районнаи двигатель.
Районная паровая электрическая станция.
20. Трансформаторная полстаниеокого напряжения.
. Неболышая трансфор
Снабжение электрической энергией бозия в деревне
Раионная тидроэлектрическая станция.
Электровоз.
25. Электрический трамвайный вагон.

Электрическпй поезд.
Электрификация пристани.
Пахота электрическим
Эеектрическая To ${ }^{2}$.
Самопвдной восьмилемешный плуг длл әдевтрошахоты Стокголии"я электрический пиуг Шведской састемы астемы 0 бщества 34. TO_{0} 중
35. Ca Самодв
То же. оже.
Фрезер для раяриуг в действии.
Самодвижу раяся длевтричесва.
Электрическая молотьба нз крестьяерная темежка.

$$
\begin{aligned}
& \text { одектричесвая мо } \\
& \text { ской губервиии. }
\end{aligned}
$$

Передвижной электрический двигатель на салазвах
Передвижной әеектричесвий мотор на двухколесной тележв
44. Повозрическая молотьба в поде.

сретнее отлеление. сретнее отделение. оже-заднее отделение
Әлектрическая иолотьба ночью при свете эуезтричесвой дзми Теялва, работающая от элекрического двигателя. Триер с электрическим проводом.
51. Мельница, работающая от электричес
52. Мереносньй электрическиі̆ двигатель на носилках
53. Соломорезка с длектрическим двигателем.
54. Корнерезка с эдектрическия двнателем
55. Эдектрическая жмыхо-дробидва.
56. Элевтрический насос дял подачи воды из вододца
58. Электрический насос для перекачивавия жидвих нечистот
59. Кругдая пила. работающая от электрического двигателя.
60. Электрическая поперечная пила
61. Электрический подвем сена на сеновал
63. Отрижка овец при помощи
64. Сешаратор с элек трическим зетоииества.
65. Электрический мотореским мотором.
66. Элевтричесвй
67. Электрические доильные приборы.
68. Электрическое доение коров.
69. Общий вид әлектрифицировавной молочвой
70. Электрический прибор для искусствевной выводки цыплят

71 Орошение подей электрическим насосом,
73. Электрическая сельско-хозяйственная овов по способу дождевавия
74. Швейная машина, работаюшая от
75. Элентриеский свериияный ста электрического двигатедя.
76. Электрическии рвчниыьннй станок.
76. Электрические ручные сверлильвне приборы для плотничьвх работ.
78. Олелтрифицированная сельская кузница и слесарная мастерская.
79. Электрическая лампа накаливания с патронои.
80. Электрическая полуваттная лампа накадивания
81. Электрический выключатель.
83. Электрический фонарь для наружного освещения
84. Электрическое освещение скотного двора.
85. Электрический прожевтор в деревне для освещения полей
86. Электрическй̆ чайник
87. Элажение электрическим утюгом.
89. Работа электрическим паяльником.
90. Телефовннй аппарат.
91. Телефоннй̆ воммутатор
93. Влияние әлектричества на варной сигнализации в деревне.

авыращивание растений (әлевтрокультура)
94. Влняние эуектрического свега на выращивание растений.
96. Гкдро-9лектрическая станция на небольшой реке.
97. Ветро-эдектрическая станция.
93. Электрическне аккумуляторы.
99. Мачта дя переносных электрических сетей в сельском хозяйстве. 100. Эдектрический двигатель в 2 дошадиных сицы и две рабочих лошади.

Содержание.

1. Основные понятия 06 электричесной энергии, ее производстве и распределении.

Подучение элевтричест
Электрические станций
намй
Перелача электрической энергии ио
дроводаи на расстояние
Напржжение электрического тока и его измерение
Влияние напряжения ва дальность передачи электрической энергии
Возможность изменения напряжения переменвого тока и ее значение.
Несчастнне случаи от әлектрического това
Нонятие о рабите
Іомность (сила) электрических дввгателей
Работа электрических двигателей
Измеревие электической әвергии
За счет чего нодучается эхектрическая энергия и от чего зависит ее стоимость
 Выгода работы электрической ставдии при полной вагрузке
Как произвохится расчет за электрич. энергию засвещение и за работу дчиые дены ва элевтичес
элевтрических двнгателей
2. Общая электрифинация народного хозайства России почему она необходима и как ее хотят выполнить,

Механизация труда иди замена работы чеговека работой машины
Звачевие механизащии труда и слабие развнтие ее в России

Необходимость широкого применения электричества в хозяйстве и прокодимость широкого пр
мншенности Росепи
Необходимость общего электроснабжения России
Раионнне әлектрические ставции
План элевтроснабжения России
Применение элевтричества в различных
Значение ялектрификации дда снабжения России тонливсм і ее ночощь в устравении переживаемого топливного кризвса.
Эдектрификация сельского хозяйствя
элевтрифигация цромншыенности

III. Элентричество в сельсном хознйстве.

А. Звачение эпектрификачии для сельского хознйства Россни.

Сөдьсвое хозяйство-плаввнй источник пнтания васелевия
Слабое развитие сельского хозайства России
Значение перехода России с трехиольного хозвйства на многопольное . Зависииость урожаев от своевременной іІ тщательной обработки почвы Довоенное хозяюство России нуждадось в конечнои счете ддя своето разУхудшение ватехо сельского хоздйства ва тоды войны й ревонюдии :
 Необхоного сельекого хозяйства. . дияоеть применения өлек

 электрдфикации России
Б. Различные примедения электричества в селыском хозяйстве.
I. Применение электричества в полевых работах. Электрическая пахота по двухмашинной системе в прииенение әлектрячества в других поеевнх работах Элевтрические самодвижущнеся пмуии Эдектрические фрезера
2. Применение электричества для обрабогни

Дадьнейшад обраоотка снятого с корна урожая Электрическая молотьба Применение элевтричеств
3. Применение әлектричества для вспомогатальных работ по хозяйству.
Повседдевнне вспомогатедьние работы по хоаяїству
Электрические манины дия щрнюотовденд корма дія едо Эдектрическая подят роин

4. Электричество в молочном хозяйстве и ітиневодстве

Эдевтричесвие сепараторы и масдобойви
Эдектрические доидыные првборн. .
Эдекррическая выводка дынлят
5. Применение алектричества

Меннорация и ее значение
Элевтрифивация мелиоратвввнх работ
6. Электрические железные дороги в сельсвоп хозайстве.

........

It 1
.

 $-$ 681

 881

H月OOOd

01 ． ．．．．．．
 кизәdaгя 801
 pedexafy $n 0$
хияэdәュәеш хІннеяяュ

[^0]: он стовт.

[^1]:

[^2]: *) Иногда элевтрическую эвергию измеряют в
 гектоватт-часах.
 Fempobatтчас мевьше виловатт-часа в десять раз.

[^3]: *) Эти двигатели по своеку устройству похожи на паровые машини и назн ваются так потому, что у них топливо сжигается не в котле, а ввутри самого двигатедя. Они строятсл для работы на нефти, керосине ид оензине и назн

[^4]: *) Указанный план утвержден Советом Народных Комиссаров 21 декабря 1921 r. для проведения его в жизнь.

[^5]: ухудшение нашего сельского ховойны и революции.

 Теперь посмотрим, в каком положении оно находится в настоящее время.

 За годы войны и революции в России, во-первых, значительно сократилось взро-

[^6]: Все цены, ириведенные в этой кнвге, относятса в довоенному вреиени.

[^7]: *) Считая по до-военным ценам

